PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MicroRNA expression in liver of whitefish (Coregonus lavaretus) exposed to microcystin-LR

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. In the field of toxicology, the relationship between toxicity and microRNA expression is poorly understood. In the present study we analyzed the abundance of 9 selected miRNAs (omy-miR-21, omy-miR-21t, omy-miR-122, omy-miR-125a, omy-miR-125b, omy-miR-125t, omy-miR-199-5a, omy-miR-295, omy-let-7a) and mRNA of 3 genes (histone H2A, ribosome protein rpl19, and Dicer which is a miRNA processing enzyme) in liver samples of whitefish exposed to Microcystin-LR (MC-LR) at a dose of 100µg*kg-1body weight for 24 or 48h. In the examined liver tissue, omymiR-122 showed the highest relative constitutive level, what is consistent with data obtained from fish and mammals. Unexpectedly, the reference H2A mRNA level was consistently up-regulated (over 20-fold; P<0.05) in fish liver after both 24 and 48h of exposure to MC-LR. The result may suggest that MC-LR acts as an initiator of specific cell-physiologic signals triggering DNA replication in fish liver cells. MC-LR treatment had no effect on the examined miRNAs levels, except for omy-miR-125a and omy-let-7a. Whereas omy-miR-125a was up-regulated (ER=2.68; S.E. 1.61-6.78; P<0.05), omy-let-7a was down-regulated (ER=0.55; S.E. 0.32-0.79; P<0.05) in whitefish liver after 48h of the treatment with MC-LR, when compared to controls. More work with the fish is essential for understanding the crosstalk of the regulatory network controlled by the two miRNAs in the context of MC-LR toxicity.
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
  • Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Poland, ul. Słoneczna 45G, 10-718 Olsztyn, Poland, phone: +48895234187; fax. +48895234131, brzuzan@uwm.edu.pl
Bibliografia
  • Ason, B., D.K. Darnell, B. Wittbrodt, E. Berezikov, W.P. Kloosterman, J. Wittbrodt, P.B. Antin, R.H. Plasterk. 2006. Differences in vertebrate microRNA expression. Proceedings of the National Academy of Sciences of the United States of America 103: 14385-14389.
  • Bernstein, E., A.M. Denli, G.J. Hannon. 2001. The rest is silence. RNA 7: 1509-1521.
  • Bernstein, E., S.Y. Kim, M.A. Carmell, E.P. Murchison, H. Alcorn, M.Z. Li, A.A. Mills, S.J. Elledge, K.V. Anderson, G.J. Hannon. 2003. Dicer is essential for mouse development. Nature Genetics 35: 215-217.
  • Bicker, S., G. Schratt. 2008. MicroRNAs: Tiny regulators of synapse function in development and disease. Journal of Cellular and Molecular Medicine 12: 1466-1476.
  • Brzuzan, P., M. Woźny, S. Ciesielski, M.K. Łuczyński, M. Góra, H. Kuźmiński, S. Dobosz. 2009. Microcystin-LR induced apoptosis and mRNA expression of p53 and cdkn1a in liver of whitefish (Coregonus lavaretus L.). Toxicon 54: 170-183.
  • Chan, J.A., A.M. Krichevsky, K.S. Kosik. 2005. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research 65: 6029-6033.
  • Chen, T., Q. Wang, J. Cui, W. Yang, Q. Shi, Z. Hua, J. Ji, P. Shen. 2005. Induction of apoptosis in mouse liver by microcystin-LR. Molecular and Cellular Proteomics 4: 958-974.
  • Chen, P.Y., H. Manninga, K. Slanchev, M. Chien, J.J. Russo, J. Ju, R. Sheridan, B. John, D.S. Marks, D. Gaidatzis, C. Sander, M. Zavolan, T. Tuschl. 2005. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes & Development 19: 1288-1293.
  • Chen, J.F., E.M. Mandel, J.M. Thomson, Q. Wu, T.E. Callis, S.M. Hammond, F.L. Conlon, D.Z. Wang. 2006. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics 38: 228-233.
  • Cimmino, A., G.A. Calin, M. Fabbri, M.V. Iorio, M. Ferracin, M. Shimizu, S.E. Wojcik, R.I. Aqeilan, S. Zupo, M. Dono, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce. 2005. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America 102: 13944-13949.
  • Connor, W., J.C. States, G.H. Mezquita, J. Dixon. 1984. Organization and nucleotide sequence of rainbow trout histone H2A and H3 genes. Journal of Molecular Evolution 20: 236-250.
  • Dominski, Z., W.F. Marzluff. 2007. Formation of the 3’ end of histone mRNA: getting closer to the end. Gene 396: 373-390.
  • Esau, C., S. Davis, S.F. Murray, X.X. Yu, S.K. Pandey, M. Pear, L. Watts, S.L. Booten, M. Graham, R. McKay, A. Subramaniam, S. Propp, B.A. Lollo, S. Freier, C.F. Bennett, S. Bhanot, B.P. Monia. 2006. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism 3: 87-98.
  • Flynt, A.S., E.J. Thatcher, J.G. Patton. 2009. RNA interference and miRNAs in zebrafish. In: Regulation of Gene Expression by Small RNAs (ed. R.K. Gaur, J.J. Rossi), pp. 149-172. CRC Press.
  • Fujita, S., T. Ito, T. Mizutani, S. Minoguchi, N. Yamamichi, K. Sakurai, H. Iba. 2008. miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. Journal of Molecular Biology 378: 492-504.
  • Fukushima, T., Y. Hamada, H. Yamada, I. Horii. 2007. Changes of microRNA expression in rat liver treated by acetaminophen or carbon tetrachloride - regulating role of micro-RNA for RNA expression. The Journal of Toxicological Sciences 32: 401-409.
  • Gilmartin, G.M. 2005. Eukaryotic mRNA 30 processing: a common means to different ends. Genes & Development 19: 2517-2521.
  • Girard, M., E. Jacquemin, A. Munnich, S. Lyonnet, A. Henrion-Caude. 2008. miR-122, a paradigm for the role of microRNAs in the liver. Journal of Hepatology 48: 648-656.
  • Gregory, R.I., K.-P. Yan, G. Amuthan, T. Chendrimada, B. Doratotaj, N. Cooch, R. Shiekhattar. 2004. The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235-240.
  • He, X., C. Duan, J. Chen, X. Ou-Yang, Z. Zhang, C. Li, H. Peng. 2009. Let-7a elevates p21WAF1 levels by targeting of NIRF and suppresses the growth of A549 lung cancer cells. FEBS Letters 583: 3501-3507.
  • Herrera, B.M., H.E. Lockstone, J.M. Taylor, Q.F. Wills, P.J. Kaisaki, A. Barrett, C. Camps, C. Fernandez, J. Ragoussis, D. Gauguier, M.I. McCarthy, C.M. Lindgren. 2009. MicroRNA-125a is overexpressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Medical Genomics 2: 54.
  • Jaeger, S., S. Barends, R. Giege, G.E. Eriani, F. Martin. 2005. Expression of metazoan replication-dependent histone genes. Biochimie 87: 827-834.
  • Jerome, T., P. Laurie, B. Louis, C. Pierre. 2007. Enjoy the silence: the story of let-7 MicroRNA and cancer. Current Genomics 8: 229-233.
  • Johnson, S.M., H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K.L. Reinert, D. Brown, F.J. Slack. 2005. RAS is regulated by the let-7 microRNA family. Cell 120: 635-47.
  • Johnson, C.D., A. Esquela-Kerscher, G. Stefani, M. Byrom, K. Kelnar, D. Ovcharenko, M. Wilson, X. Wang, J. Shelton, J. Shingara, L. Chin, D. Brown, F.J. Slack. 2007. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research 67: 7713-7722.
  • Komatsu, M., T. Furukawa, R. Ikeda, S. Takumi, Q. Nong, K. Aoyama, S.-I. Akiyama, D. Keppler, T. Takeuchi. 2007. Involvement of mitogen-activated protein kinase signaling pathways in microcystin-LR-induced apoptosis after its selective uptake mediated by OATP1B1 and OATP1B3. Toxicological Sciences 97: 407- 416.
  • Koscianska, E., V. Baev, K. Skreka, K. Oikonomaki, V. Rusinov, M. Tabler, K. Kalantidis. 2007. Prediction and preliminary validation of oncogene regulation by miRNAs. BMC Molecular Biology 8: 79.
  • Krutzfeldt, J., N. Rajewsky, R. Braich, K.G. Rajeev, T. Tuschl, M. Manoharan, M. Stoffel. 2005. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685-689.
  • Le, M.T.N., C. Teh, N. Shyh-Chang, H. Xie, B. Zhou, V. Korzh, H.F. Lodish, B. Lim. 2009. MicroRNA-125b is a novel negative regulator of p53. Genes & Development 23: 862-876.
  • Lecellier, C.H., P. Dunoyer, K. Arar, J. Lehmann-Che, S. Eyquem, C. Himber, A. Saib, O. Voinnet. 2005. A cellular microRNA mediates antiviral defense in human cells. Science 308: 557-560.
  • Lewis, B.P., C.B. Burge, D.P. Bartel. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20.
  • Meng, F., R. Henson, H. Wehbe-Janek, H. Smith, Y. Ueno, T. Patel. 2007. The microRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. The Journal of Biological Chemistry 282: 8256-8264.
  • Miura, G.A., N.A. Robinson, T.W. Geisbert, K.A. Bostian, J.D. White, J.G. Pace. 1989. Comparison of in vivo and in vitro toxic effects of microcystin-LR in fasted rats. Toxicon 27: 1229-1240.
  • Mudhasani, R., Z. Zhu, G. Hutvagner, C.M. Eischen, S. Lyle, L.L. Hall, J.B. Lawrence, A.N. Imbalzano, S.N. Jones. 2008. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. The Journal of Cell Biology 181: 1055-1063.
  • NIH. 1985. Guide for the care and use of laboratory animals. NIH publication No. 86-23. National Institute of Health. Public Health Service, Bethesda.
  • Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.
  • Pfaffl, M.W., G.W. Horgan, L. Dempfle. 2002. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 30: e36.
  • Pillai, R.S., S.N. Bhattaharyya, W. Filipowicz. 2007. Repression of protein synthesis by miRNAs: How many mechanisms? Trends in Cell Biology 17: 118-126.
  • Poy, M.N., L. Eliasson, J. Krutzfeldt, S. Kuwajima, X. Ma, P.E. Macdonald, S. Pfeffer, T. Tuschl, N. Rajewsky, P. Rorsman, M. Stoffel. 2004. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432: 226-230.
  • Ramachandra, R.K., M. Salem, S. Gahr, C.E. Rexroad III, J. Yao. 2008. Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): their expression during early embryonic development. BMC Developmental Biology 8: 41.
  • Salem, M., C. Xiao, J. Womack, C.E. Rexroad III, J. Yao. 2009. MicroRNA repertoire for functional genome research in rainbow trout (Oncorhynchus mykiss). Marine Biotechnology 12: 410-429.
  • Song, J.-J., J. Liu, N.H. Tolia, J. Scheniderman, S.K. Smith, R.A. Martienssen, G.J. Hannon, L. Joshua-Tor. 2003. The crystal structure of the Argonaute 2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Structural Biology 10: 1026-1032.
  • Weng, D., Y. Lu, Y. Wei, Y. Liu, P. Shen. 2007. The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology 232: 15-23.
  • Wienholds, E., R.H. Plasterk. 2005. MicroRNA function in animal development. FEBS Letters 579: 5911-5922.
  • Wienholds, E., M.J. Koudijs, F. vanEeden, E. Cuppen, R. Plasterk. 2003. The microRNA-producing enzyme Dicer is essential for zebrafish development. Nature Genetics 35: 217-218.
  • Woźny, M., P. Brzuzan, M.K. Łuczyńki, M. Góra, J. Bidzińska, P. Jurkiewicz. 2008. Effects of cyclopenta[c]phenanthrene and its derivatives on zona radiata protein, ERa, and CYP1A mRNA expression in liver of rainbow trout (Oncorhynchus mykiss Walbaum). Chemico-Biological Interactions 174: 60-68.
  • Xu, B., Y. Huang. 2009. Histone H2a mRNA interacts with Lin28 and contains a Lin28-dependent posttranscriptional regulatory element. Nucleic Acids Research 37: 4256-4263.
  • Yang, W.J., D.D.Yang, S. Na, G.E. Sandusky, Q. Zhang, G. Zhao. 2005. Dicer is required for embryonic angiogenesis during mouse development. The Journal of Biological Chemistry 280: 9330-9335.
  • Zhang, B., Q. Wang, X. Pan. 2007. MicroRNAs and their regulatory roles in animals and plants. Journal of Cellular Physiology 210: 279-289.
  • Žegura, B., B. Sedmak, M. Filipiã. 2003. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon 41: 41-48.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0062-0091
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.