Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The process of cathodic evolution of hydrogen at metal (or composite) electrodes is one of the most widely studied electrochemical reactions. It has important technological significance in the fields of fuel-cell and battery development. Nickel-coated carbon fibre (NiCCF) offers an attractive, large surface-area catalyst material for the process of cathodic evolution of hydrogen. Such composite materials could potentially be used to produce large area, woven cathodes for the generation of H2 in commercial electrolysers. Kinetics of the hydrogen evolution reaction (HER) at commercially available NiCCF material (Toho-Tenax fibre) were studied in 30 wt.% KOH solution, at room temperature over the cathodic overpotential range: -100 to - 500 mV/RHE. Significance of the cathode deactivation effect (in relation to the corresponding values of the charge-transfer resistance and the cathode potential parameters) upon continuous alkaline water electrolysis has also been discussed.
Czasopismo
Rocznik
Tom
Strony
1--5
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-957 Olsztyn, Poland. Phone: +48 89 523-4177; Fax: +48 89 523-4801, boguslaw.pierozynski@uwm.edu.pl
Bibliografia
- Abouatallah, R.M., D.W. Kirk, J.W. Graydon. 2002. Long-term electrolytic hydrogen permeation in nickel and the effect of vanadium species addition. Electrochimica Acta 47: 2483-2494.
- Angelo, A.C.D. 2007. Electrocatalysis of hydrogen evolution reaction on Pt electrode surface-modified by S-2 chemisorption. International Journal of Hydrogen Energy 32: 542-547.
- Baer, R, Y. Zeiri, R. Kosloff. 1997. Hydrogen transport in nickel (111). Physical Review B 55: 10952-10974.
- Barber, J.H., B.E. Conway. 1999. Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M NaOH. Journal of Electroanalytical Chemistry 461: 80-89.
- Barber, J.H., S. Morin, B.E. Conway. 1998. Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H. Journal of Electroanalytical Chemistry 446: 125-138.
- Bernardini, M., N. Comisso, G. Davolio, G. Mengoli. 1998. Formation of nickel hydrides by hydrogen evolution in alkaline media. Journal of Electroanalytical Chemistry 442: 125-135.
- Brass, A.M., A. Chanfreau. 1996. Accelerated diffusion of hydrogen along grain boundaries in nickel. Acta Materialia 44: 3823-3831.
- Burchardt, T. 2000. The hydrogen evolution reaction on NiPx alloys. International Journal of Hydrogen Energy 25: 627-634.
- Conway, B.E., B.V. Tilak. 1992. Behavior and characterization of kinetically involved chemisorbed intermediates in electrocatalysis of gas evolution reactions. Advances in Catalysis 38: 1-147.
- Conway, B.E., B.V. Tilak. 2002. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta 47: 3571-3594.
- Daftsis, E., N. Pagalos, A. Jannakoudakis, P. Jannakoudakis, E. Theodoridou, R. Rashkov, M. Loukaytsheva, N. Atanassov. 2003. Preparation of a carbon fiber-nickel-type material and investigation of the electrocatalytic activity for the hydrogen evolution reaction. Journal of The Electrochemical Society 150: C787-C793.
- Ettel, V.A., E. Krause, J. Van Wagner. 1994. Metal coating of inorganic fibers and solid particulates. Canadian Patent 1 333 547.
- Hashimoto, K., T. Sasaki, S. Meguro, K. Asami. 2004. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production. Materials Science and Engineering A 375-377: 942-945.
- Highfield, J.G., E. Claude, K. Oguro. 1999. Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model. Electrochimica Acta 44: 2805-2814.
- Hitz, C., A. Lasia. 2001. Experimental study and modeling of impedance of the her on porous Ni electrodes. Journal of Electroanalytical Chemistry 500: 213-222.
- Huang, C.Y., J.F. Pai. 1998. Optimum conditions of electroless nickel plating on carbon fibres for EMI shielding effectiveness of ENCF/ABS composites. European Polymer Journal 34: 261-267.
- Huang, C.Y., W.W. Mo, M.L. Roan. 2004. Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites. Surface and Coatings Technology 184: 163-169.
- Huot, J.Y., L. Brossard. 1987. Time dependence of the hydrogen discharge at 70°C on nickel cathodes. International Journal of Hydrogen Energy 12: 821-830.
- Huot, J.Y., L. Brossard. 1988. In situ activation of cobalt cathodes in alkaline water electrolysis. Journal of Applied Electrochemistry 18: 815-822.
- Juskenas, R., R. Giraitis, V. Pakstas. 2002. X-ray diffraction investigation of nickel-hydride formation in alkaline solution. Chemija 13: 26-31.
- Krolikowski, A., A. Wiecko. 2002. Impedance studies of hydrogen evolution on Ni-P alloys. Electrochimica Acta 47: 2065-2069.
- Markovic, N.M., S.T. Sarraf, H.A. Gasteiger, P.N. Ross. 1996. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. Journal of Chemical Society, Faraday Transaction 92: 3719-3725.
- Morin, L.G. 1986. Apparatus for the production of continuous yarns or tows comprising high strength metal coated fibers. US Patent 4 609 449.
- Morin, L.G. 1987a. Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom. US Patent 4 661 403.
- Morin, L.G. 1987b. Metal bonded composites and process. US Patent 4 680 093.
- Morin, L.G. 1990a. Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom. US Patent 4 909 910.
- Morin, L.G. 1990b. Chaff comprising metal coated fibers. US Patent 4 942 090.
- Morin, L.G. 1990c. Chaff comprising metal coated fibers. US Patent 4 976 828.
- Nishimura, R., H. Inoue, K. Okitsu, R.M. Latanision, G.K. Hubler. 2007. Hydrogen permeation behavior in pure nickel implanted with phosphorus, sulphur and their mixture. Corrosion Science 49: 1478-1495.
- Park, S.J., Y.S. Jang, K.Y. Rhee. 2002. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces. Jornal of Colloid and Interface Science 245: 383-390.
- Pierozynski, B., L. Smoczynski. 2008. Electrochemical corrosion behavior of nickel-coated carbon fiber materials in various electrolytic media. Journal of The Electrochemical Society 155: C427-C436.
- Pierozynski, B., L. Smoczynski. 2009. Kinetics of hydrogen evolution reaction at nickel-coated carbon fiber materials in 0.5 M H2 SO4 and 0.1 M NaOH solutions. Journal of The Electrochemical Society 156: B1045-B1050.
- Rommal, H.E.G., P.J. Moran. 1988. The role of absorbed hydrogen on the voltage-time behavior of nickel cathodes in hydrogen evolution. Journal of The Electrochemical Society 135: 343-346.
- Santos, D.S.D., P.E.V.D. Miranda. 1998. Hydrogen solubility in amorphous and crystalline materials. International Journal of Hydrogen Energy 23: 1011-1017.
- Sheela, G., M. Pushpavanam, S. Pushpavanam. 2002. Zinc-nickel alloy electrodeposits for water electrolysis. International Journal of Hydrogen Energy 27: 627-633.
- Soares, D.M., O. Teschke, I. Torriani. 1992. Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media. Journal of The Electrochemical Society 139: 98-105.
- Wu, Y.M., W.S. Li, X.M. Long, F.H. Wu, H.Y. Chen, J.H. Yan, C.R. Zhang. 2005. Effect of bismuth on hydrogen evolution reaction on lead in sulfuric acid solution. Journal of Power Sources 144: 338-345.
- Tenax®MC HTA A302. Nickiel-coated filament yarn. Material Safety Data Sheet. 2010. http://www.tohotenax-eu.com.
- Tzeng, S.S., F.Y. Chang. 2001. EMI shielding effectiveness of metalcoated carbon fiber-reinforced ABS composites. Materials Science and Engineering A302: 258-267.
- Vracar, L., B.E. Conway. 1990. Hydride formation at Ni-containing glassy-metal electrodes during the H2 evolution reaction in alkaline solutions. Journal of Electroanalytical Chemistry 277: 253-275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0062-0084