PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The potential and pitfalls of exploiting nitrogen fixing bacteria in agricultural soils as a substitute for inorganic fertiliser

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrogen fixing bacteria have been used for centuries to improve the fertility of agricultural soils. Since the introduction of inorganic nitrogen (N) fertiliser that provides a reliable boost to crop yields whilst reducing land and labour requirements, the use of biological nitrogen fixation has been in decline. Recently, concerns have been expressed about the sustainability of inorganic N fertiliser application, however, there remain doubts about whether N2 fixing bacteria alone can provide agriculture with sufficient fixed N to feed a burgeoning global population. In this paper we review the current state of our knowledge regarding those diazotrophic bacteria that have a role to play in agriculture. We focus on our current areas of research, particularly, the importance of understanding the classification and mechanism of action of N2 fixing bacteria that are used in agricultural soils. We discuss the applications of N2 fixing bacteria that illustrate their potential to provide sustainable N, particularly focussing on Australian and South American agricultural systems where these bacteria are widely exploited to maintain soil fertility. We also identify problems with the use of bacteria as inoculants, including ineffective inoculation due to poor quality preparation, the use of appropriate isolates and issues with sustainability. We review the outlook for biological N fixation highlighting how molecular biology may enable the expression of N fixation in non-leguminous crops.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
autor
autor
  • Biological Sciences Research Group, School of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne NE1 8ST, UK, Tel/ fax: 0191 227 3176, Stephen.cummings@unn.ac.uk
Bibliografia
  • Andrews, M., E.K. James, S.P. Cummings, A.A. Zavalin, L.V. Vinogradova, B.A. McKenzie. 2003. Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35: 209-229.
  • Ballard, R.A., J.F. Slattery, N. Charman. 2005. Host range and saprophytic competence of Sinorhizobium meliloti - a comparison of strains for the inoculation of lucerne, strand and disc medics. Australian Journal of Experimental Agriculture 45: 209-216.
  • Brockwell, J., P.J. Bottomley, J.E. Theis. 1995. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant and Soil 174: 143-180.
  • Brockwell, J. 2004. Abundant, cheap nitrogen for Australian farmers: a history of Australian Nodulation and Nitrogen Fixation Conferences. Soil Biology & Biochemistry 36: 1195-1204.
  • Bullard, G.K., R.J. Roughley, D.J. Pulsford. 2005. The legume inoculant industry and inoculant quality control in Australia: 1953-2003. Australian Journal of Experimental Agriculture 45: 127-140.
  • Carlsson, G., K. Huss-Danell. 2003. Nitrogen fixation in perennial forage legumes in the field. Plant and Soil 253: 353-372.
  • Carr, S.J., G.S.P. Ritchie, W.M. Porter. 1991. A soil test for aluminium toxicity in acidic subsoils of yellow earths in Western Australia. Australian Journal of Agricultural Research 42: 875-892.
  • Catroux, G., A. Hartmann, C. Revellin. 2001. Trends in rhizobial inoculant production and use. Plant and Soil 230: 21-30.
  • Cocking, E.C., P.J. Stone, M.R. Davey. 2006. Intracellular colonisation of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. In Vitro Cellular & Development Biology-Plant 42: 74-82.
  • Choudhury, A.T.M.A, I.R. Kennedy. 2004. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils 39: 219-227.
  • Crews, T.E., M.B. Peoples. 2004. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agriculture Ecosystems & Environment 102: 279-297.
  • Cummings, S.P. 2005. The role and future potential of nitrogen fixing bacteria to boost productivity in organic and low-input sustainable farming systems. Environmental Biotechnology 1: 1-10.
  • Cusato M.S., R.D. Tortosa. 2000. Frankia and crop interactions. Journal of Experimental Botany 68: 47-53.
  • Denton, M.D., D.R. Coventry, P.J. Murphy, J.G. Howieson, W.D. Bellotti. 2002. Competition between inoculant and naturalised Rhizobium leguminosarum bv. trifolii for nodulation of annual clovers in alkaline soils. Australian Journal of Agricultural Research 53: 1019-1026.
  • Dixon, R., Q. Cheng, G.-F. Shen, A. Day, M. Dowson-Day. 1997. Nif gene transfer and expression in chloroplasts: Prospects and problems. Plant and Soil 194: 193-203.
  • Dong, Z.M., M.J. Canny, M.E. McCully, M.R. Roboredo, C.F. Cabadilla, E. Ortega, R. Rodes. 1994. A nitrogen-fixing endophyte of sugarcane stems - a new role for the apoplast. Plant Physiology 105: 1139-1147.
  • Evans, J. 2005. An evaluation of potential Rhizobium inoculant strains used for pulse production in acidic soils of south-east Australia. Australian Journal of Experimental Agriculture 45: 257-268.
  • Farrand S.K., P.B. van Berkum, P. Oger. 2003. Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematic and Evolutionary Microbiology 53: 1681-1687.
  • Gan, Y., F. Selles, K.G. Hanson, R.P. Zentner, B.G. McConkey, C.L. McDonald. 2005. Effect of formulation and placement of Mesorhizobium inoculants for chickpea in the semiarid Canadian prairies. Canadian Journal of Plant Science 85: 555-565.
  • Garbeva, P., J.A. van Veen , J.D. van Elsas. 2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial Ecology 45: 302-316.
  • Gemell, L.G., J.F. Slattery, J.G. Howieson, D.F. Herridge. 2005. Age of peat-based lupin and chickpea inoculants in relation to quality and efficacy. Australian Journal of Experimental Agriculture 45: 183-188.
  • Graham, P.H., C.P. Vance. 2000. Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Research 65: 93-106.
  • Hirsch, P.R. 2004. Release of transgenic bacterial inoculants - rhizobia as a case study. Plant and Soil 266: 1-10.
  • Hoefsloot, G., A.J. Termorshuizen, D.A. Watt, M.D. Cramer. 2005. Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugar cane cultivar. Plant and Soil 277: 85-96.
  • Howieson, J.G., G.W. O'Hara, S.J. Carr. 2000. Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. Field Crops Research 65: 107-122.
  • Howieson, J.G., R.J. Yates, G.W. O'Hara, M. Ryder, D. Real. 2005. The interactions of Rhizobium leguminosarum biovar trifolii in nodulation of annual and perennial Trifolium spp. from diverse centres of origin. Australian Journal of Experimental Agriculture 45: 199-207.
  • Humphry, D., M. Andrews, S. Santos, E.K. James, L. Vinogradova, L. Perin, V. Reis, S.P. Cummings. 2006. Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia. Antonie van Leeuwenhoek DOI: 10.1007/s10482-006-9100-z.
  • Hungria, M., D.S. Andrade, L.M.O. Chueire, A. Probanza, F.J Guttierrez-Manero, M. Meg’as. 2000. Isolation and characterisation of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biology and Biochemistry 32: 1515-1528.
  • Hurek, T., L.L. Handley, B. Reinhold-Hurek, Y. Piche. 2002. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant-Microbe Interactions 15: 233-242.
  • Iniguez, A.L., Y.M Dong, E.W. Triplett. 2004. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions 17: 1078-1085.
  • James, E.K. 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research 65: 197-209.
  • James, E.K., F.L. Olivares, A.L.M. de Oliveira, F.B. dos Reis Jr., L.G. da Silva, V.M. Reis. 2001. Further observations on the interaction between sugarcane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. Journal of Experimental Botany 52: 747-760.
  • Jenkinson, D.S. 2001. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant and Soil 228: 3-15.
  • Jones, D.L., J. Farrar, K.E. Giller. 2003. Associative nitrogen fixation and root exudation-What is theoretically possible in the rhizosphere? Symbiosis 35:19-38.
  • Ladha, J.K., P.M. Reddy. 2001. Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant and Soil 252: 151-167.
  • Lindström, K., M.E. Martinez-Romero. 2005. Subcommittee on the taxonomy of Agrobacterium and Rhizobium. International Journal of Systematic and Evolutionary Microbiology 55: 1383.
  • Mostasso, L., F.B. Mostasso, B.G. Dias, M.A.T. Vargas, M. Hungria. 2002. Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Research 73: 121-132.
  • Moulin, L., A. Munive, B. Dreyfus, C. Boivin-Masson. 2001. Nodulation of legumes by members of the ß-subclass of Proteobacteria. Nature 411: 948-950.
  • Munos-Rojas, J., J. Caballero-Mellado. 2003. Population dynamics of Gluconacetobacter diazotrophicus in sugar cane cultivars and its effect on plant growth. Microbial Ecology 46: 454-464.
  • Musiyiwa, K., S. Mpepereki, K.E. Giller. 2005. Symbiotic effectiveness and host ranges of indigenous rhizobia nodulating promiscuous soyabean varieties in Zimbabwean soils. Soil Biology & Biochemistry 37: 1169-1176.
  • Nogueira, E.D., F. Vinagre, H.P. Masuda, C. Vargas, V.L.M. de Padua, F. da Silva, R.V. dos Santos, J.I. Baldani, P. Cavalcanti, G. Ferreira, A.S. Hemerly. 2001. Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genetics and Molecular Biology 24: 199-206.
  • Okogun, J.A., N. Sanginga. 2003. Can introduced and indigenous rhizobial strains compete for nodule formation by promiscuous soybean in the moist savannah agroecological zone of Nigeria? Biology and Fertility of Soils 38: 26-31.
  • Raven, J.A., A.A. Franco, E.L. de Jesus, J.J. Neto. 1990. H+ extrusion and organic-acid synthesis in N2-fixing symbioses involving vascular plants. New Phytologist 114: 369-389.
  • Ridley, A.M., P.M. Mele, C.R. Beverly. 2004. Legume-based farming in Southern Australia: developing sustainable systems to meet environmental challenges. Soil Biology & Biochemistry 36: 1213-1221.
  • Saghal, M., B.N. Johri. 2006. Taxonomy of Rhizobia: Current status. Current Science 90: 486-487.
  • Sanginga, N. 2003. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant and Soil 252: 25-39.
  • Simms, E.L., D.L. Taylor, J. Povich, R.P. Shefferson, J.L. Sachs, M. Urbina. 2006. An empirical test of partner choice in a wild legume-rhizobium interaction. Proceedings of the Royal Society B- Biological Sciences 273: 77-81.
  • Slattery, J.F., D.J. Pearce, W.J. Slattery. 2004. Effects of resident rhizobial communities and soil type on the effective nodulation of pulse legumes. Soil Biology & Biochemistry 36: 1339-1346.
  • Smil, V. 2001. Enriching the Earth. Cambridge, Massachusetts: MIT Press.
  • Tang, C., C.D.A. McLay, L. Barton. 1997. A comparison of proton excretion of twelve pasture legumes grown in nutrient solution. Australian Journal of Experimental Agriculture 37: 563-570.
  • Tang, C. 1998. Factors affecting soil acidification under legumes I. Effects of potassium supply. Plant and Soil 199: 275-282.
  • Tang, C., M.J. Unkovich, J.W. Bowden. 1999. Factors affecting soil acidification under legumes. III. Acid production by N-fixing legumes as influenced by nitrate supply. New Phytologist 143: 513-521.
  • Turner, S.L., X.X. Zhang, F.D. Li, J.P.W. Young. 2002. What does a bacterial genome sequence represent? Misassignment of MAFF 303099 to the genospecies Mesorhizobium loti. Microbiology 148: 3330-3331.
  • Vargas, M.A.T., I.C. Mendes, M. Hungria. 2000. Response of field-grown bean (Phaseolus vulgaris L.) to Rhizobium inoculation and nitrogen fertilisation in two Cerrados soils. Bioloy and Fertility of Soils 32: 228-233.
  • Vargas, C., V.L.M. De Padua, E.D. Nogueira, F. Vinagre, H.P. Masuda, F.R. Da Silva, J.I. Baldani, P.C.G. Ferreira, A.S. Hemerly. 2003. Signalling pathways mediating the association between sugarcane and endophytic diazotrophic bacteria: A genomic approach. Symbiosis 35: 159-180.
  • Walsh, K.B., S.M. Brown, D.K. Harrison. 2006. Can a N2-fixing Gluconacetobacter diazotrophicus association with sugarcane be achieved? Australian Journal of Agricultural Research 57: 235-241.
  • Van Berkum, P., Z. Terefework, L. Paulin, S. Suomalainen, K. Lindström, B.D. Eardley. 2003. Discordant phylogenies within the rrn loci of rhizobia. Journal of Bacteriology 185: 2988-2998.
  • Young, J.M., L.D. Kuykendall, E. Martinez-Romero, A. Kerr, H. Sawada. 2001. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology 51: 89-103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0062-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.