PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role and future potential of nitrogen fixing bacteria to boost productivity in organic and low-input sustainable farming systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biological nitrogen fixation (BNF) results from the interaction between a plant and diazotrophic bacteria. The bacteria are either free living in the soil or live in symbiosis with the plant. Despite biological nitrogen fixation offering a sustainable solution to nitrogen limitation in agricultural soils its use is in decline. Problems with this technology can arise for two major reasons. Firstly, the inappropriate use of diazotrophs with the expectation of achieving N2 fixation. Free-living diazotrophs have been used as inoculants of non-legume crops for many years, however, their mechanism of action remains to be thoroughly characterised. While some may interact with crops to increase available N in soil, many achieve increases in crop yield through the production of plant hormones. This adds nothing to the soil N budget and increases in yields observed are often variable. The second problem occurs when legumes are used to increase soil N in combination with rhizobial symbionts. Frequently poor nodulation of the legumes is observed in the field even when inoculated with .elite. strains of rhizobia. These observations are a consequence of one or more factors, including the use of low quality inoculants, the inability of the rhizobial inoculant to tolerate soil conditions, or their lack of competitiveness for nodule occupancy with indigenous soil rhizobia. These issues can be overcome by the use of more rigorous criteria in inoculant selection and production. The use of inoculants developed from indigenous soil rhizobia offers a tailor made solution to obtaining inoculant strains that are competitive in a particular soil with a specific crop. Here, examples of where this approach has been successful and the potential of this technology to increase the use of BNF in more marginal soils are discussed.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 61 poz., tab.
Twórcy
  • School of Applied Sciences, Ellison Building, University of Northumbria, Newcastle-upon-Tyne, NE1 8ST, UK
Bibliografia
  • Abd-Alla, M.H. 1999. Autoregulation of soybean-Bradyrhizobium nodule symbiosis is controlled by shoot and or root factors. World Journal of Microbiology and Biotechnology 15: 715-722.
  • Aguilar, O.M., M.V. Lopez, P.M. Riccillo. 2001. The diversity of rhizobia nodulating beans in Northwest Argentina as a source of more efficient inoculant strains. Journal of Biotechnology 91: 181-188.
  • Alves, B.J.R., R.M. Boddey, S. Urquiaga. 2003. The success of BNF in soybean in Brazil. Plant and Soil 252: 1-9. Andrews, M., E.K. James, S.P. Cummings, A.A. Zavalin, L.V. Vinogradova, B.A. McKenzie. 2003. Use of nitrogen fixing bacteria inoculants as a substitute for nitrogen fertiliser for dryland graminaceous crops: progress made, mechanisms of action and future potential. Symbiosis 35: 209-229.
  • Baldock, J.A., R.A. Ballard. 2004. Fixed nitrogen in sustainable farming systems: a symposium examining factors influencing the extent of biological nitrogen fixation and its role in southern Australian agricultural systems. Setting the scene. Soil Biology and Chemistry 36: 1191-1193.
  • Ballard, R.A., B.R. Shepherd, N. Charman. 2003. Nodulation and growth of pasture legumes with naturalised soil rhizobia. 3. Lucerne (Medicago sativa L.). Australian Journal of Experimental Agriculture 43: 135-140.
  • Brockwell, J., P.J. Bottomley, J.E. Theis. 1995. Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant and Soil 174: 143-180.
  • Broos, K, H. Beyens, E. Smolders. 2005. Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biology and Biochemistry 37: 573-579.
  • Broughton, W.J., F. Zhang, X. Perret, C. Staehelin. 2003. Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant and Soil 252: 129-137.
  • Carter, J.M., J.S. Tieman, A.H. Gibson. 1995. Competitiveness and persistence of strains of Rhizobia for faba bean in acid and alkaline soils. Soil Biology & Biochemistry 27: 617-623.
  • Catroux, G., A. Hartmann, C. Revellin. 2001. Trends in rhizobial inoculants production and use. Plant and Soil 230: 21-30.
  • Collins, M.T., J.E. Thies, L.K. Abbott. 2002. Diversity and symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii isolates from pasture soils in south-western Australia. Australian Journal of Soil Research 40: 1319-1329.
  • Crews, T.E., M.B. Peoples. 2004. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agriculture Ecosystems and Environment 102: 279-297. Date, R.A. 2000. Inoculated legumes in cropping systems in the tropics. Field Crops Research 65: 123-136.
  • Deaker, R., R.J. Roughley, I.R. Kennedy. 2004. Legume seed inoculation technology . a review. Soil Biology and Biochemistry 36: 1275-1288.
  • Denton, M.D., D.R. Coventry, P.J. Murphy, J.G. Howieson, W.D. Bellotti. 2002. Competition between inoculant and naturalised Rhizobium leguminosarum bv. trifolii for nodulation of annual clovers in alkaline soils. Australian Journal of Agricultural Research 53: 1019-1026.
  • Denton, M.D., W.G. Reeve, J.G. Howieson, D.R. Coventry. 2003. Competitive abilities of common field isolates and a commercial strain ofRhizobium leguminosarum bv. trifolii for clover nodule occupancy. Soil Biology and Biochemistry 35: 1039-1048.
  • Dong, Z.M., M.J. Canny, M.E. McCully, M.R. Roboredo, C.F. Cabadilla, E. Ortega, R. Rodes. 1994. A nitrogen-fixing endophyte of sugarcane stems . a new role for the apoplast. Plant Physiology 105: 1139-1147.
  • Drevon, J.J., C. Abdelly, N. Armarger, E.A. Aouani, J. Aurag, H. Gherbi, M. Jebara, C. Lluch, H. Payre, O. Schump, M. Soussi, B. Sifi, M. Trabelsi. 2001. An interdisciplinary research strategy to improve symbiotic nitrogen fixation and yield of common bean (Phaseolus vulgaris) in salinised areas of the Mediterranean basin. Journal of Biotechnology 91: 257-268.
  • Elsheikh, E.A.E., M. Wood. 1995. Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biology and Biochemistry 27: 657-661.
  • Fening, J.O., S.K.A. Danso. 2002. Variation in symbiotic effectiveness of cowpea bradyrhizobia indigenous to Ghanaian soils. Applied Soil Ecology 21: 23-29.
  • Flores, M., V.M. Gonzalez, A. Pardo, A. Leija, E. Martinez, D. Romero, D. Pinero, G. Davila, R. Palacios. 1988. Genomic instability of Rhizobium phaseoli. Journal of Bacteriology 170: 1191-1196.
  • Graham, P.H., C.P. Vance. 2000. Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Research 65: 93-106.
  • Howieson, J.G., M.A. Ewing, C.W. Thorn, C.K. Revell. 1991. Increased yield in annual species of medicago grown in acidic soil in response to inoculation with acid tolerant Rhizobium meliloti. In: Plant-soil Interactions at Low pH; Second International Symposium. (ed. R.J. Wright, V.C. Baligar, R.P. Murrmann), pp. 589-595. Kluwer: Dordecht.
  • Howieson, J.G., G.W. O.Hara, S.J. Carr. 2000. Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. Field Crops Research 65: 107-122.
  • Howieson, J., R. Ballard. 2004. Optimising the legume symbiosis in stressful and competitive environments within southern Australia - some contemporary thoughts. Soil Biology and Biochemistry 36: 1261-1273.
  • Hungria, M., M.A.T. Vargas. 2000. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research 65: 151-164.
  • Hungria, M., D.S. Andrade, L.M.O. Chueire, A. Probanza, F.J Guttierrez-Manero, M. Megías. 2000. Isolation and characterisation of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biology and Biochemistry 32: 1515-1528.
  • Hurek, T., L.L. Handley, B. Reinhold-Hurek, Y. Piche. 2002. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant-Microbe Interactions 15: 233-242.
  • Iniguez, A.L., Y.M Dong, E.W. Triplett. 2004. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions 17: 1078-1085.
  • James, E.K., F.L. Olivares, A.L.M. de Oliveira, F.B. dos Reis Jr., L.G. da Silva, V.M. Reis. 2001. Further observations on the interaction between sugarcane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. Journal of Experimental Botany 52: 747-760.
  • Jenkinson, D.S. 2001. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant and Soil 228: 3-15.
  • Kennedy, I.R., A. Choudhury, M.L. Kecskes. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry 36: 1229-1244.
  • Lupwayi, N.Z., P.E. Olsen, E.S. Sande, H.H. Keyser, M.M. Collins, P.W. Singleton, W.A. Rice. 2000. Inoculant quality and its evaluation. Field Crop Research 65: 259-270.
  • Marufu, L., N. Karanja, M. Ryder. 1995. Legume inoculant production and use in East and Southern Africa. Soil Biology and Biochemistry 27: 735-738.
  • Mashhady, A.S., S.H. Salem, F.N. Barakah, A.M. Heggo. 1998. Effect of salinity on survival and symbiotic performance between Rhizobium meliloti and Medicago sativa L. in Saudi Arabian soils. Arid Soil Research and Rehabilitation 12: 3-14.
  • McKenzie, B.A., G.D. Hill. 2004. The current role and future potential of N2 fixing legumes in sustainable farming systems. Aspects of Applied Biology 72: 101-110.
  • Mhamdi, R., G. Laguerre, M.E. Aouani, M. Mars, N. Amarger. 2002. Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiology Ecology 41: 77-84.
  • Mostasso, L., F.B. Mostasso, B.G. Dias, M.A.T. Vargas, M. Hungria. 2002. Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Research 73: 121-132.
  • Mpepereki, S., F. Javaheri, P. Davis, K.E. Giller. 2000. Soyabeans and sustainable agriculture. Promiscuous soyabeans in southern Africa. Field Crops Research 65: 137-149.
  • Musiyiwa, K., S. Mpepereki, K.E. Giller, 2005. Symbiotic effectiveness and host ranges of indigenous rhizobia nodulating promiscuous soyabean varieties in Zimbabwean soils. Soil Biology and Biochemistry 37: 1169-1176.
  • Naeem, F.I., M.M. Ashraf, K.A. Malik, F.Y. Hafeez. 2004. Competitiveness of introduced Rhizobium strains for nodulation in fodder legumes. Pakistan Journal of Botany 36: 159-166.
  • Patrick, H.N., W.L. Lowther. 1995. Influence of the number of rhizobia on the nodulation and establishment of Trifolium ambiguum. Soil Biology and Biochemistry 4/5: 721-724.
  • Peoples, M.B., J.A. Baldock. 2001. Nitrogen dynamics of pastures: nitrogen fixation inputs, the impact of legumes on soil nitrogen fertility, and the contributions of fixed nitrogen to Australian farming systems. Australian Journal of Experimental Agriculture 41: 327-346.
  • Ridley, A.M., P.M., Mele, C.R. Beverly. 2004. Legume-based farming in southern Australia: developing sustainable systems to meet environmental challenges. Soil Biology and Biochemistry 36: 1213-1221.
  • Roughley, R.J., L.G. Gemell, J.A. Thompson, J. Brockwell. 1993. The number of Bradyrhizobium sp (Lupinus) applied to seed and its effect on rhizosphere colonisation, nodulation and yield of lupin. Soil Biology and Biochemistry 25: 1443-1458.
  • Sanginga, N. 2003. Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant and Soil 252: 25-39.
  • Sanginga N., S.K.A. Danso, K. Mulongoy, A.A. Ojeifo. 1994. Persistence and recovery of introduced rhizobium 10 years after inoculation on Leucaena leucocephala grown on alfisol in Southwestern Nigeria. Plant and Soil 159: 199-204.
  • Sessitsch, A., J.G. Howieson, X. Perret, H. Antoun, E. Martinez-Romero. 2002. Advances in Rhizobium research. Critical Reviews in Plant Sciences 21: 323-378.
  • Shield, I.F., T. Scott, H.J. Stevenson, J.E. Leach, A.D. Todd. 2000. The causes of over-winter plant losses of autumn-sown white lupins (Lupinus albus) in different regions of the UK over three seasons. Journal of Agricultural Science 135: 173-183.
  • Shirazi, U., R. Ansari, M. Ali, S.M. Alam, B. Khanzada, A. Shreen, M.A. Khan, S.M. Mujtaba, M. Ali. 2001. Effect of different rhizobial strains on the growth and nitrogen uptake in Acacias under saline soil. Pakistan Journal of Botany 33: 7-11.
  • Shisanya, C.A. 2002. Improvement of drought adapted tepary bean (Phaseolus acutifolius A. Gray var. latifolius) yield through biological nitrogen fixation in semi-arid SE-Keyna. European Journal of Agronomy 16: 13-24.
  • Slattery, J.F., D.R. Coventry, W.J. Slattery. 2001. Rhizobial ecology as affected by the soil environment. Australian Journal of Experimental Agriculture 41: 289-298.
  • Slattery, J.F., D.J. Pearce, W.J. Slattery. 2004. Effects of resident rhizobial communities and soil type on the effective nodulation of pulse legumes. Soil Biology and Biochemistry 36: 1339-1346.
  • Smil, V. 2001. Enriching the Earth. Cambridge , Massachusetts: MIT Press.
  • Stephens, J.H.G., H.M. Rask. 2000. Inoculant production and formulation. Field Crop Research 65: 249-258.
  • Tang, C.X., A.D. Robson. 1993. PH above 6.0 reduces nodulation in Lupinus species. Plant and Soil 152: 269-276.
  • Theis, J.E., P.W. Singleton, B.B. Bohlool. 1991. Influence of size of indigenous rhizobial population on establishment and symbiotic performance of introduced rhizobia on field.grown legumes. Applied and Environmental Microbiology 57: 19-28.
  • Unkovich, M.J., J.S. Pate. 2000. An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Research 65: 211-228.
  • Unkovich, M.J., J.S. Pate, E.L. Armstrong, P. Sanford. 1995. Nitrogen economy of annual crop and pasture legumes in southwest Australia. Soil Biology and Biochemistry 27: 585-588.
  • van Jaarsveld, C.M., M.A. Smit, G.H.J. Kruger. 2002. Interaction amongst soybean Glycine max (L.) Merrill genotype, soil type and inoculant strain with regard to N-2 fixation. Journal of Agronomy and Crop Science 188: 206-211.
  • van Kessel, C., C. Hartley. 2000. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Research 65: 165-181.
  • Zhang, H., B. Prithiviraj, T.C. Charles, B.T. Driscoll, D.L Smith. 2003. Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. European Journal of Agronomy 19: 205-213.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0061-0080
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.