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Summary  

Work related to the first-principle modeling of a boiler feedwater heater operating in a power unit is 

presented, along with theoretical discussion concerning its structural simplifications, parameter 

estimation, and dynamical validation. The objectives of this work are as follows: (i) formulate a 

moderately complex first-principle model of a feedwater heater to reproduce operational measurements in 

real-time simulations, (ii) develop a tuning method for this model, (iii) propose key indicators of heater 

performance using a model-based approach, and finally (iv) automate the calculation process of the 

indicators. The first objective has been addressed in the first paper while the remaining objectives are 

dealt with in this paper. The paper discusses a nonlinear least-square optimization technique used to 

adjust the phenomenological parameters of the feedwater heater model, i.e. heat transfer coefficients. The 

model variables (e.g. variability of the power rate of energy exchange) and estimated parameter values 

were used to formulate key performance indicators intended for a model-driven diagnostics approach. 

The computational process was organized in an iterative process of updating model parameters and 

indicators. The validation was successfully performed using operational data from a 225MW coal-fired 

power unit. 

 

Key words: power plant, feedwater heater, modeling, system identification 

 

Streszczenie  

Artyku  przedstawia proces modelowania podgrzewacza regeneracyjnego pracuj cego w systemie 

bloku energetycznego z wykorzystaniem równa  fizycznych. Artyku  zawiera dyskusje dotycz ca 

uprosze  struktury modelu, estymacji jego parametrów oraz walidacji. Celami pracy jest: (i) 

sformu owanie umiarkowanie z o onego modelu wymiennika odtwarzaj cego dane pomiarowe 

w rzeczywistej skali czasu, (ii) przedstawienie metody strojenia modelu, (iii) zaproponowanie 

wska ników u yteczno ci podgrzewacza na podstawie podej cia wspartego modelem, oraz (iv) 

automatyzacja procesu wyznaczania tych wska ników. Pierwszy z celów zawiera si  w pierwszej cz ci 

pracy, a pozosta e w cz ci drugiej. Artyku  zawiera dyskusj  wyników zastosowania nieliniowej metod 

najmniejszych kwadratów w celu dostrojenia parametrów fenomenologicznych modelu podgrzewacza 

wody zasilaj cej, tj. wspó czynników wymiany ciep a. Zmienne modelu (np. chwilowy transfer energii) 

oraz warto ci estymowanych parametrów zosta y u yte w celu sformu owania wska ników 

odpowiednich dla diagnostyki bloku energetycznego wspartej modelem. Proces obliczeniowy zosta  

zorganizowany w sposób iteracyjnego uaktualniania parametrów modelu oraz wska ników, na podstawie 

danych operacyjnych pochodz cych z 225 MW bloku opalanego w glem kamiennym.  

 

S owa kluczowe: elektrownia, podgrzewacz regeneracyjny, modelowanie, identyfikacja systemów. 

 

INTRODUCTION

 

Recently, two trends concerning the maintenance 

of power plants have been noticeable in the market. 

The first trend concerns the so-called “smart 

maintenance” strategy to outsource maintenance 

services in small- and mid-scale power plants. This 

is done in order to minimize the involvement of the 

in-house resources to only necessary and basic 

maintenance activities. In this respect, leading 

Original Equipment Manufacturers (OEMs) of 

power plant equipment (turbine, control system, 

generator) offer to such power plants services of 

remote monitoring and continuous plant follow-up 

in the form of maintenance packages involving 

third-parties’ equipment [1]. Typically, smart 

maintenance agreements oblige service providers to 

support power plants in achieving designed 

performance with more operational flexibility and 

better control of the risk of operational interruptions. 

Implementing a “smart maintenance” strategy 

ensures reliable daily operation of power units and 

provides, essential for the power plant, availability 

of advanced engineering knowledge in case any 

malfunction or severe failure mode occurs. Such a 

maintenance strategy requires vital components and 

configuration settings to be monitored remotely and 

data to be automatically logged. Process data are 
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available on-line to the service center for trending 

and analysis against fleet operating characteristics 

[1]; process parameters may be viewed and 

controlled by software systems, and analyzed 

virtually from remote location systems featuring 

multiple diagnostic tools related to tracking critical 

machinery parameters and enabling early warning 

notification to be communicated, and therefore 

preventive actions to be undertaken. The second 

trend concerns the tendency to concentrate the 

research staff, development laboratories and 

knowledge in engineering centers, and is becoming 

clearly recognizable in the market. These integrated 

resources can provide daily monitoring services 

remotely to many power plants under a “smart 

maintenance” strategy and allow maintenance costs 

to be significantly reduced, flex engineering and 

maintenance resources to be utilized with higher 

flexibility, and risk of failure to be reduced. From a 

research and development perspective, “smart 

maintenance” stimulates development of model-

based methodologies that create high-level physical 

insight into the monitoring process and defines new 

key indicators of process performance. For instance, 

a heat transfer coefficient is a high-level indicator, 

as opposed to low-level indicators measured directly 

by the plant instrumentation system, e.g. pressure or 

temperature. Nevertheless, models require 

measurements of numerous variables for which a 

well-developed instrumentation and software 

infrastructure has to be available in power plants. 

Therefore, engineering centers providing “smart 

maintenance“ services tend to equip monitored 

power plants with a number of sensors greater than 

justified by usual power plants safety and 

availability requirements. Such investments in 

infrastructure are paid back by savings in time and 

costs related to shortening the reaction time in case 

of a failure mode, as well as a decreased number of 

direct interventions in power plants. Additionally, 

only the procedure for fixing a failure mode is 

communicated to the power plant without engaging 

highly skilled engineering resources in analyzing the 

situation directly in the power plant. Development 

of a model-based approach is nevertheless costly, 

and is profitable only when knowledge is 

concentrated and utilized simultaneously for the 

monitoring of many power plants. This requires not 

only advanced engineering knowledge but also well-

organized business and information processes. 

The method, involving the combination of first-

principle and data-driven approaches towards 

assessing efficiency and diagnosing power units, is 

presented in this paper. The methodology proposed 

herein allows physical characteristics of a feedwater 

heater to be reconstructed in order to analyze 

performance using key process indicators. The 

power of this approach lies in tracking key process 

indicators by means of instantaneously adjusting, 

based on process data, parameters of the first-

principle model developed in [2]. The method is 

called the greybox approach, to indicate the fact that 

it combines the “white box” approach, which is 

based on analytical physical models, but requires 

knowledge of several detailed parameters of the 

machine, and the “black box” approach, which is 

purely based on data, but does not yield any 

physically interpretable parameter values.  

Models developed using the greybox method 

reconstruct estimates of the physical process, such 

as the amount of exchanged heat energy (i.e. 

transferring power) that, in turn, enable dynamic 

energy balances of components (e.g. feedwater 

heater) to be created. These power balances can be 

integrated into a complete dynamic energy balance 

of a power unit and enable process imperfections 

(e.g. hysteresis) to be visualized. These 

imperfections, corresponding to energy wastage in 

the power generation process, contribute to the 

overall efficiency of a power unit, A decrease in the 

performance of components may also indicate 

a technical issue resulting from a faulty mode or 

non-optimal settings.  

The method proposed in this work is not 

intended to detect severe faults, which activate the 

safety systems of a power unit; but aims at detecting 

relatively slow, i.e. of hours or days, changes in 

processes, e.g. internal leakage through a cracked 

pipe. A key process indicator, namely the power rate 

of energy exchange in a component reflects such a 

fault, enabling first-level analysis and indicating 

deviation from the targeted efficiency. The second-

level analysis, including utilization of the 

engineering expertise and technical indicators which 

are reconstructed parameters of a first-principle 

model, e.g. heat transfer coefficients, energy heat 

exchange rates, enthalpies, is performed. 

Investigations of this kind can be supported by 

process and control data, e.g. a tendency of the 

system to deviate from a required setpoint of a 

controller. Among the greatest challenges, though 

beyond the scope of this paper, is definition, e.g. by 

means of 2D/3D graphs reflecting relationships 

among critical variables of patterns of key process 

indicators corresponding to a healthy system. These 

graphs require statistical bounds defining 

confidentiality range and involving process 

uncertainty to be imposed. 

The structure of this paper is the following. In 

the first section, tuning and validation of a first-

principle model of a feedwater heater are presented. 

The second section discusses a proposal of 

performance indicators of a feedwater heater, while 

the third section provides an exemplary case study 

where these indicators were obtained based on 

operational data from a 225MW unit. The last 

section is the summary. 
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1. TUNING OF A FEEDWATER HEATER 

MODEL

The procedure of model tuning consists of two 

in-a-loop phases: (i) simulation of a model by 

solving differential equations numerically, and (ii) 

numerical minimization in the parameter space with 

respect to an error-related criterion function. The 

function describing the error has to be a positive and 

decreasing function of the differences between the 

measurement signals and model responses. The 

interested reader may find more information 

concerning the available methods and algorithms 

that support identification of first-principle models 

in [3-4]. 

 

1.1. Estimation of model parameters 

 

A physical model can conveniently be 

represented as a set of nonlinear state-space 

equations formulated in the continuous-time domain 

as:  
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where the vector f(.) is a nonlinear, time-varying 

function of the state vector x(t) and the input vector 

u(t), while the vector h(.) is a nonlinear 

measurement function; w(t) and v(t) are sequences 

of independent random variables and  denotes a 

vector of unknown parameters. In nonlinear 

systems, the state vectors and the measurement 

vectors may have non Gaussian distribution. The 

sum of squared errors is used as an error criterion. 

This problem is known in numerical analysis as “the 

nonlinear least-square problem” [3]. The objective 

of the estimation is to minimize the error function 

between the measurement signals and model 

responses by means of an iterative numerical 

technique. 

  

1.2. Parameters of the modeled heater

 

A high-pressure heater denoted as XW1 was 

used as a reference system characterized by the 

operational and constructional data presented in 

Table 1. The heater is a part of a feedwater 

regeneration circuit in which feed pumps pass the 

condensed steam (feedwater) from a condenser 

through heater banks, heated by the steam extracted 

from the high, intermediate and low-pressure 

sections of a steam turbine. The condensate is 

pumped to the deaerator, through the bank of low-

pressure heaters XN12, XN3, XN4 and XN5, and 

further, from the deaerator to the steam generator 

(boiler) through the bank of high-pressure heaters 

XW1, XW2 and XW3. 

1.3. Settings of the Optimization and Simulation 

Algorithms 

 

The simulation and optimization settings used in 

the parameter adjustment process are presented in 

Table 2. The Newton-Gauss method, lsqnonlin(.) 

routine implemented in the Optimization Toolbox of 

Matlab, was used to minimize the function 

describing the error in the measurement signals and 

model responses. 

 

1.4. Adjustment of Model Parameters Based on 

Operational Data 

 

The simulation model considered in this section 

consists of a heater model and a model equivalent to 

a control system installed in a power plant. The 

control system could not be directly reconstructed in 

the simulation, due to its complexity and limited 

relevance to the functionality required in the model 

(e.g. trip logic). Hence, the module maintaining a 

constant level of the condensate inside the heater 

was simplified using a PID controller model. 

Geometrical and physical parameters of the heater 

model (Table 1) were extracted from the operational 

documentation and were assumed to be known. Four 

phenomenological heat transfer parameters were 

identified and the two selected model responses are 

presented graphically in Fig. 1.  

 

 
Fig. 1. Graphical representation of the results (FW – 

feedwater, CO – condensate) 

 

The model reproduced the trend in the 

condensate and the feedwater temperatures with 

acceptable accuracy. The model was run and tested 

on a PC with an Intel Pentium 2.8GHz CPU and 4 

GB RAM under Microsoft Windows XP 

Professional x64 Edition. Matlab version 7.2 

(R2006a) was used. Convergence trajectory plots 

(not presented here) show a stable trend towards 

constant values of the parameters, which correspond 

to a convergence towards the minimum of the 

criterion function, within less than 6 iterations. 
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Table 1. Parameters of the high-pressure heater XW1 used in simulation. 

Type of parameter Parameter Symbol Unit Value 

Heat Exchange area – steam 
12A  [m2] 

12Vf A  

Heat Exchange area – condensate 
23A [m2] 

12VfA Atot

Overall heat exchange area 
totA [m2] 600 

Steam and condensate volume (
2312 VV ) 

totalV  [m3] 2.9 

Feedwater volume 
5645 VV  [m3] 4 

Geometrical 

Heater height x  [m] 10 

Mass of the metal of a heater mm [kg] 35500 Physical 

Specific heat of a metal cpm [J/kg K] 500 10-3 

Heat transfer coefficient steam to metal 
mk12  [kW m-2·K-1] 1.5 Phenomenological 

Heat transfer coefficient condensate to 

t l
mk23  [kW m-2·K-1] 0.6 

Proportional P [-] 0.8 

Integration I [s] 53 

PID-settings 

Derivative D [s-1] 0 

Table 2. Simulation and optimization settings 

Simulation Optimization (minimization) 

Option Value Option Value 

Solver ode23tb (stiff/TR-BDF2) Gradient type basic 

Max step size auto Algorithm lsqnonlin 

Min step size auto Cost type SSE 

Zero crossing control disable all DiffMaxChange 0.1 

Relative tolerance auto DiffMinChange 1E-08 

Absolute tolerance auto Large scale true 

MaxIter 28 

RobustCost False 

TolCon 1E-6 

 

TolFun 1E-6 

2. PERFORMANCE INDICATORS FOR

A FEEDWATER HEATER 

 

The range of operating conditions corresponds 

to the range of the power ratio of the turboset, i.e. 

between 140 and 225MW. Execution of the 

procedure for numerical adjustment of these 

parameters allowed values of these parameters that 

assure the heater model that best fits to the data to 

be found. The model was tested on the same PC 

configurations as presented in the previous section. 

Parameters of the feedwater heater model were 

updated according to the flowchart presented in Fig. 

2 for low and high-pressure heaters, designated as 

XN4 and XW1 respectively. The results for models 

of both heaters are qualitatively the same, so only 

results for the XW1 will be presented in this 

section. 

Parameters of the first-principle model are 

sequentially updated based on operational data. 

Every sequence of data has a length of 60 samples 

and corresponds to 60 minutes of operation time. 

The Newton-Gauss method, lsqnonlin(.) routine 

implemented in the Optimization Toolbox of 

Matlab, used to update model parameters is 

sufficiently efficient, as proved in Fig. 3, to follow 

the operational data in the real-time mode. 

Values of updated parameters are used as initial 

guess conditions in an algorithm adjusting model 

parameters for the next data sequence. As a result, 

the minimization algorithm has a better starting 

point and so a smaller number of iterations is 

required in each sequence. The value of an 

objective function error and the number of iterations 

are used as stopping criteria for the parameter 

updating process. 
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Fig. 2. Procedure of updating model parameters 
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Fig. 3. Actual time vs. available real time for 

computations of a single heater 

 

 

3. PERFORMANCE INDICATORS IN 

DETECTION OF ABNORMAL 

OPERATION OF A FEEDWATER 

HEATER

 

Two types of indicators, efficiency and technical 

ones, have been defined in order to asses the 

technical state of an object. Typically, such 

indicators take the form of a scalar value (e.g. 

amount of transferred energy) or a characteristic 

(e.g. power rate vs. amount of transferred energy) 

and allow a pattern of values corresponding to 

different regimes of operation (e.g. low vs. high 

power rate) to be defined. Bounds imposed on the 

pattern of normal operation of a power unit define 

the tolerance range beyond which the performance is 

unacceptable. 

The diagnostic process proposed in this paper 

consists of two stages (i) the fault detection, and (ii) 

the fault recognition. Firstly, symptoms of 

a malfunction are detected based on variation of an 

efficiency indicator, i.e. by detecting the efficiency 

indicator crossing tolerance bounds. Secondly, 

a technical indicator enables a problem to be 

addressed more precisely. The methodology 

proposed herein does not eliminate the need for 

specialists and experts to contribute to the fault 

recognition process, as their role is to interpret 

trends in indicators. The method is an extension of 

available symptom indicators to provide new early 

warning indicators of physical meaning. 

Fig. 4 presents an example of an efficiency 

indicator based on an operational curve, i.e. 

a relation of the electrical power rate to 

corresponding overall energy transfer rate from the 

steam to the feedwater (cf. left-most plot in Fig. 4).  

The overall energy transfer rate can be split into 

the steam-to-feedwater and the condensate-to-

feedwater transfer, for the upper and lower volume 

of a heater respectively (cf. middle and right-most 

plot in Fig. 4). These two energy transfer rates are 

governed by respective heat transfer coefficients 

present in the heater model. As shown in Fig. 4, data 

points approximately lay along a line (solid line) and 

are bounded by 95% confidence intervals (dashed 

lines). An example of technical indicators can be a 

hysteresis loop of the energy transfer in the steam-

to-feedwater and the energy transfer in the 

condensate-to-feedwater, corresponding to two heat 

transfer coefficients used in the heater model. The 

size of a hysteresis loop, among others, is an 

indication of heat accumulation in the metal. 
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Fig. 4. Procedure of updating model parameters 
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Fig. 5. Values of heat transfer coefficients over 

operational time 

 

Another option for constructing a diagnostic tool 

is to investigate trends in heat transfer parameters 

versus the operational time (Fig. 5). Values of these 

parameters vary depending on the operating point of 

the power unit, however, and thus yet another 

possibility of constructing a technical indicator 

should be considered, namely the relationship 

between the value of the heat transfer coefficient 

and the temperature of the feedwater leaving the 

heater. 

 

4. DISCUSSION OF RESULTS

AND CONCLUSIONS 

 

This paper focuses on the tuning and validation 

process of the first-principle feedwater heater model 

intended for model-based diagnostics as a part of the 

entire model of a power unit. Moreover, the paper 

proposes key performance indicators which reflect 

operational changes in the process of heating the 

feedwater versus assumed statistical bounds.  

The proposed model tuning approach is 

advocated for industrial conditions when the values 

of physical and geometrical parameters are known, 

while the values of phenomenological ones have to 

be adjusted as only their rough initial guess values 

are available. The development process of 

a feedwater heater model is presented in [2]. 

Measurement data from a 225MW coal fired unit 

were used to validate the model's accuracy. The 

validation process presented in the paper indicates 

that the performance in steady and transient 

conditions is good, achieving a correlation between 

the simulations and measurements at a level of 60-

90%. This proves that the model can be used in 

further studies and the development of techniques 

related to model-based diagnostics.  

Efficiency and technical performance indicators 

were formulated using a statistical approach to 

facilitate the recognition of specific patterns in data. 

Pattern-based analysis was proposed as the most 

suitable form of analysis because of the availability 

of a high amount of operational data. Pattern 

analysis allows a few scenarios, represented by 

different patterns which correspond to sequential 

operation of power units, to be created. A power 

unit can be in a few operational states corresponding 

to its rotational speed expressed in rpm; these states 

usually are: idle (rpm = 0), turning gear (0 < rpm < 

30), transient (500 < rpm < 2950) and synchronized 

(2990 < rpm < 3010). Sequential operation of a 

power unit enables two groups of patterns, 

belonging to transient and steady operation, to be 

obtained. Typically, the indicators (measures) 
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introduced in this paper reflect nonlinear 

relationships and are therefore represented by first- 

or second-order trend curves. Parametric 

representation of the performance indicators allows 

boundary conditions to be easily imposed. These 

boundaries can be automatically detected and, as 

such, are able to be utilized in an early warning 

malfunction notification function. Moreover, such 

parametric representation facilitates the 

quantification of the uncertainty of the diagnosis. 

There are numerous statistical methods supporting 

the decision-making process which are based on sets 

of uncertain and inconsistent data [5]. Such methods 

should be considered to reject false alarms. 

Future investigations are planned to focus on the 

repeatability and reproducibility of the system 

identification results separately, based on a number 

of data sets measured in similar operational 

conditions. Repeatability and reproducibility 

indicators are important from the diagnostic point of 

view since these indicators directly yield confidence 

intervals for adjusted parameters and confirm, 

statistically, the correctness of the proposed 

approach. 
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