
TECHNICAL SCIENCES
Abbrev.: Techn. Sc., 2011, 14(1)

THE IMPLEMENTATION OF THE SPATIALLY

ENABLED DATABASE WITH OPEN SOURCE

SOFTWARE AND OPEN SPECIFICATIONS USAGE

Michał Bednarczyk

Chair of Surveying
University of Warmia and Mazury in Olszytn

K e y w o r d s: open source software, OpenGIS specifications, relational database, MySQL, spatial
database.

A b s t r a c t

This article describes the design approach in the elaboration and implementation of spatial
database. This solution consists of computer programs, algorithms and appropriately designed
database schema. The primary objective was to use open source software, and assumptions contained
in the OpenGIS open specifications.

IMPLEMENTACJA PRZESTRZENNIE ZORIENTOWANEJ BAZY DANYCH

Z WYKORZYSTANIEM WYBRANEGO OPROGRAMOWANIA OPEN SOURCE

I OTWARTYCH SPECYFIKACJI

Michał Bednarczyk

Katedra Geodezji Szczegółowej
Uniwersytet Warmińsko-Mazurski w Olsztynie

S ł o w a k l u c z o w e: oprogramowanie open source, specyfikacje OpenGIS, relacyjna baza danych,
MySQL, baza danych przestrzennych

A b s t r a k t

W artykule opisano autorskie podejście podczas opracowywania i implementacji bazy danych
przestrzennych. Rozwiązanie to składa się z programów komputerowych, algorytmów i odpowiednio
zaprojektowanego schematu bazy danych. Podstawowym założeniem było wykorzystanie oprogra-
mowania open source oraz założeń zawartych w otwartych specyfikacjach OpenGIS.



Introduction

This article describes a way to develop a spatially-enabled database for GIS
systems. The primary objective of the proposed solution was based on the
assumptions contained in the OpenGIS specifications, developed by the Open
Geospatial Consortium (OGC) and MySQL – an open source relational
database management system. A database schema has been designed as a part
of this objective, as well as algorithms and computer programs for converting
data into a form suitable for the inclusion in the database schema, and an
application which enables remote access to the data on the server. For the most
part, the article describes the database itself, which, as the unitary data source,
is the most important part of any GIS system. Although the applications
needed for data conversion and loading are just as important, the paper will
only mention them briefly, because a full description would take too much
space.

Open source – means software developed with source code. It is possible to
download it, use, make changes in source code and compile without any
payment. It is mostly distributed under GNU/GPL license. The reason for
addressing this subject was the increasing interest in open specifications and
open source software, as well as its still growing quality and functionality. This
creates a need for a closer look at the possibilities of its application in practice,
because it often involves sizable financial savings.

OpenGIS specifications are rather extensive and have a wide range of
applications. This paper discusses only the scope of the OpenGIS specification
as implemented in the MySQL system and directly used in the approach
described below. The reader will find here some general information about the
OpenGIS specifications and a description of the scope of their implementation
in the MySQL system. As the next step the author describes the spatially-
enabled database he created. The proposed solution uses the capabilities of
MySQL, resulting both from the work of its authors and the implementation of
the OpenGIS specifications. The final section of the paper describes the
practical use of the database created as a data source for Java application,
developed by the author.

Open GIS Specifications

OpenGIS Specifications are technical documents, describing in detail inter-
faces or encoding. They are widely available, free of charge. They can be used
by all the software developers wishing to use the proposed solutions in their
products. Creation of these specifications is the basis of the Open Geospatial

Michał Bednarczyk72



Consortium to facilitate the interoperability of different computer programs.
The ideal situation would be if the programs created by two different develop-
ers implementing the same specification worked without a problem.

These documents are created for GIS products, especially for web applica-
tions. OGC open standards are being largely taken over by International
Organization for Standardization (ISO) to become ISO standards. The cooper-
ation between OGC and International Organization for Standardization re-
sults in ISO standards and OGC specifications being identical. The difference
is only in copyrights (GAŹDZICKI 2007). OGC specifications standardize many
GIS issues such as: Catalogue Services, Coordinate Transformation Service,
GML, Web Map Service, Web Feature Service, OpenLS Service, simple fea-
tures implementation and many others. More information can be found on:
http://www.opengeospatial.org.

For the purposes of this article the assumptions of OGC specification
(Implementation Specification for Geographic Information – Simple Feature

Access) were used. It describes interfaces for accessing spatial data, defines
methods of publication, storage, retrieval and perform operations on vector
graphical objects (simple features) comprising the digital map (points, lines,
areas etc.). Assumptions of this OGC specification have been implemented in
MySQL relational database management system.

MySQL Relational Database Management System

MySQL was created in the second half of 90’s of the last century. MySQL’s
creator is Michael “Monty” Widenius from the Swedish company TcX
DataKonsult AB (BEDNARCZYK 2005). The first open source version of MySQL
was published in may 1995. The process of development and improvement has
accelerated since that time. This happens because of the members of the
Internet community who started to create MySQL together, who see in it an
excellent database management system for web applications. Mainly because
of its high performance.

Today MySQL is one of the most popular database management systems
among the open source products (STONES, MATTHEW 2003). It is developed as
an open source with an appropriate business model. It means that MySQL can
be distributed under two different kinds of licenses: non-commercial free
GNU/GPL or full paid commercial license. Commercial version is fully sup-
ported with additional services, such as 24 hours technical support (help in
configuration, advices, increasing of functionality, use of advanced functions
etc.), additional tools for better configuration, automatic updates. Commercial
license is also recommended when MySQL source code is to be used as a part of
another commercial system.

The Implementation of the Spatially Enabled... 73



As the MySQL evolved, more abilities have become available. At first there
were only basic functions, which are needed for data storage and distribution
– table creation, data and table manipulation using SQL, safety mechanisms
etc. MySQL ver.5 used by the author of this article has the following features
(AXMARK, WIDENIUS 2007):
– transactions,
– replication
– cluster,
– spatial extensions (implemented according to Open GIS specifications),
– stored procedures and functions,
– triggers,
– views,
– information schema (system metadata).

In addition, extensive documentation and many tools for data administra-
tion and management are included. All these things make MySQL very similar
to commercial systems such as Oracle for example. Due to spatial extensions
included in MySQL and increase of functionality (compared to earlier versions
used primarily for Websites), the possibility of using this system in the field of
GIS is worth considering.

Spatial Extensions and Geometry Types in MySQL

As mentioned, spatial extensions in MySQL are implemented according to
Open GIS specifications and based on the OpenGIS Geometry Model. They
extend SQL language, available in MySQL, with new functions and geometry
types for storing and managing spatial data. In MySQL 5 not all rthe
ecommended by the OpenGIS functions are available yet – this applies mainly
to spatial analyses. Spatial extensions appeared for the first time in MySQL
version 4.1.

As mentioned earlier, the implementation of spatial extensions in MySQL
is based on the considerations of OpenGIS Specifications. For this system, they
are an extension of spatial SQL environment (geometric) data types (geometry
types), together with the features to support them. Not all functions recom-
mended by the OpenGIS are available in MySQL 5 – this applies mainly to
spatial analyses. For the first time they appeared in MySQL version 4.1.

Geometry types are used to store information about feature geometry
(point, line, area etc.). They can be divided into:

– types which store information about simple-geometry features, such as:
POINT, LINESTRING, POLYGON, GEOMETRY – each of the above ge-
ometry types.

Michał Bednarczyk74



– Types which store information about complex-geometry features, which
can contain many simple geometry features, such as: MULTIPOINT, MULTI-
LINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION.

They can be used in the same way as the standard SQL data types (for
example INTEGER, CHAR or REAL). Therefore, they can be used to create
a column in table or define a variable of type, for example POLYGON. Class
hierarchy of geometry types is presented in the diagram below (Fig. 1).

MultiPoint

Point

Geometry

Curve Surface GeometryCollection

MultiSurface MultiCurve

MultiPolygon MultiLineString

LineString Polygon

Fig. 1. Geometry types class hierarchy diagram, according to Open GIS specification
Source: OpenGIS Implementation Specification for Geographic information – Simple feature access
– Part 2: SQL option. http://www.opengeospatial.org.

GEOMETRY class is the parent class for all these which inherit from it.
Therefore, all classes derive attributes and properties from GEOMETRY,
depending on the type of feature they represent. A detailed description of all
classes can be found in Open GIS specification: OpenGIS Implementation

Specification for Geographic information – Simple Feature Access.

Data Formats for Spatial Information

MySQL implements – also according to Open GIS specification – two kinds
of spatial data formats. All functions called by client applications, operating on
spatial data, can use one of them. These are:
– WKT – Well Known Text Format,
– WKB – Well Known Binary Format.
Here are some examples of data in WKT format:
– a point with coordinates (10, 12): POINT(10,12),

The Implementation of the Spatially Enabled... 75



– a linestring consisted of four vertices: LINESTRING(0 0, 10 10, 20 28, 50
65),

– a polygon with a linear ring inside: POLYGON((0 0, 10 0, 10 10, 0 10, 0 0),(5
5, 7 5, 7 7, 5 7, 5 5)),

– Line and point in one geometry type: GEOMETRYCOLLECTION(POINT
(10 10), LINESTRING(11 12, 15 20)).
The data represented in WKB format is specially prepared BLOB1 values.

For example: Point with coordinates (1.0,1.0) will be represented as:
0101000000000000000000F03F000000000000F03F

Where the different parts of the data stream specified above in hexadecimal
notation, means:

01 – byte order (determine whether the most significant bit is at the
beginning or end of a stream, affects the order of reading the bytes),

01000000 – feature geometry type (point, line poligon etc. 1 to 7),
000000000000F03F – X coordinate (double),
000000000000F03F – Y coordinate (double).

Functions Operating on Spatial Data

Internally, the data of the geometry objects are not stored in any of the
above formats. MySQL uses its own format, while WKT and WBK are used to
exchange data. Spatial extensions are available through appropriate functions,
whose interfaces are described in the OpenGIS specifications. These functions
can be divided into:

1) Functions for creating spatially enabled database. They return ge-
ometry value of the specified type (eg. POLYGON, LINESTRING, etc.).
Available functions are using WKT or WKB format or created for MySQL (not
included in the OpenGIS specification) format.. They are primarily used for
such tasks as:

– creating spatial data type columns,
– inserting spatial values into database tables,
– selecting spatial values from database,
– conversion between spatial data formats.
2) Functions for analysis of spatial information. They are used for:
– obtaining information about the graphical attributes of the object – e.g.

length, the number of vertices, area, the number of objects in the collection,
etc.

1 BLOB – Binary Long Object – binary data type used in relational databases. It is used to store
binary data such as media files, pictures etc.

Michał Bednarczyk76



– creating geometry from existing elements – e.g. join, difference, buffer
zone, next vertex etc.,

– the analysis of the relationship between objects – e.g. intersection,
disjoint, contain, overlap, etc.

These functions can be used in SQL queries. This makes it possible to
manipulate spatial data and perform spatial analysis through a commonly
known language of structured queries. For example, to insert into the field
geo–kol in table geo–tab value that represents the point with the coordinates
(1,1) the following query can be used:

INSERT INTO geo–tab(geo–kol) VALUES(GeomFromText(‘POINT(1,1)’))
Where GeomFromText() is one of the functions described above, which

converts string POINT(1,1) in WKT format into a value which can be saved in
the database.

Spatial analysis can be performed in the same way, except that a different
function and SQL keywords must be used.

User-Defined Procedures and Functions

MySQL ver.5 makes it possible to create user-defined functions and
procedures (stored routines). According to the information contained in the
MySQL Reference Manual, their syntax is compatible with SQL: 2003 stan-
dard. Use of the routines increases functionality of the system. After the
procedures are created and saved in the system, they can be used as a part of
SQL queries, just like functions operating on spatial data, which were de-
scribed before. Such functionality can be found in commercial systems e.g.
Oracle. Routines allow to:

– automate internal processes such as: fields update, replication, perform-
ing several operations in one call and other operations on the data in the
database,

– enhance the safety of performed operations – the client cannot access
tables directly, only through the routines; in this way operations performed on
the database are invisible for him.

– enhance performance – single procedure call instead of many consecutive
commands to the server.

– improve overall functionality (beyond SQL) – the syntax of the routines
is similar to well known programming languages and includes loops, condi-
tions, declaration of variables etc.; SQL commands also can be used.

The Implementation of the Spatially Enabled... 77



Implementation of Spatially Enabled Database in Mysql

The database discussed in this paper can be supplied with data from an
external data source which is a database from Intergraph MGE-PC GIS
system, running in Microstation environment. A special application, called
Sipos-export, was created by the author for this purpose. It can convert and
upload data into the MySQL database. A short description of Sipos-export can
be found in the chapter The Role of User-Defined Routines in the Process of

Data Processing.
However, in the data conversion process, user defined routines, mentioned

above, are used. They were programmed and applied specifically to automate
activities related to data conversion and uploading into the server.

The data presented in this work was originally produced, as already
mentioned, in the MGE-PC GIS system. It has been moved and transformed
from this system by the author, with a specially developed application, as
described here. The general scheme of the database after transformation
consists of the following tables:

1) feature – a table with information about the feature classes in the
system – this table contains following columns:

– fclassname – taken over from MGE-PC feature class name (fname),
– fcode – taken over from MGE-PC feature class code,
– ftype – taken over from MGE-PC and modified feature type – takes the

following values: 1 – not present in the MGE-PC – this code is used for
graphical elements which are not GIS features (not having identifiers binding
them with attributes), 0 – undefined, 1 – point, 2 – line, 3 – area, 4 – centroid,
5 – label,

– category – taken over from MGE-PC category identifier,
– mgetablename – MGE-PC table name in which feature attributes were

originally stored (MGE-PC feature table name),
– mgelevel – layer number, to which features of this class were assigned in

MGE-PC,
– csid – coordinate system identifier,
– f-geometry-column – column name in the feature table, where geometry

attributes are stored;
2) primitive – stores vertex coordinates of individual features (point primi-

tives). Contains columns:
– pid – the identifier of the point primitive,
– X – the X coordinate,
– Y – the Y coordinate,
3) prim-feature – stores connection schemas of vertexes for every single

feature. Columns are:

Michał Bednarczyk78



– pid – point primitive identifier from primitive table,
– fclassname – feature class name,
– fid – feature identifier,
– elnum – the number of a graphical element as a part of the feature; the

numbering proceeds according to the order of writing elements in DGN project
file,

– eltype – integer specifying the type of graphical element as a part of the
feature (eg. line – 3, polyline – 4, shape – 6, etc.),

– num – the number of a node in the graphical element as a part of the
feature; always starts from 1, within the component;

4) <feature table> – a table, with any name, which contains descriptive and
graphical data for all features of a given class. A single line of such a table
corresponds to a single feature, while a column corresponds to a single
attribute. The number of tables in the table depends on the number of classes
defined by the user in the system. It may contain the following columns:

– <descriptive attribute> – a column, with any name, which contains
a descriptive attribute, eg. name, size, etc.). The table may contain any number
of these columns,

– <graphical attributes> – a geometry column (in accordance with Open-
GIS) which contains geometric attributes of a feature. There can only be one
column of this type. The default name during export is: GEOMETRY–ATT.

The schemas of all tables except feature tables are predetermined, so their
creation in the system is not problematic. The construction of a feature table is
automatically set during export, based on the information in MGE-PC
database.

According to OpenGiIS specifications, feature tables contain a column with
geometric attributes (feature geometry). The remaining attributes may be of
any type and are derived from the original versions of these tables (MGE-PC).
An example of database schema is shown on figure 2.

In geodesy points with coordinates obtained by calculations or in
a measurement play a pivotal role. It is a basic piece of data needed for the
preparation of cartographic document. In this situation, the most logical path
in the creation of a GIS system is to (simplified):

1) Obtain data (by a measurement, calculation, etc.)
2) Feed the system with points,
3) Construct features based on these points.
Following this line of reasoning, the proposed way of converting and

storing data makes use of two tables: primitive and prim-feature. The former
table stores the points’ coordinates – point primitives. They can be obtained
from different sources (e.g. calculations, direct measurements, other systems).
Features are then contructed on the basis of these coordinates. Each feature

The Implementation of the Spatially Enabled... 79



Fig. 2. An example of a MySQL server-side database schema
Source: own work.

has a map of node connections – in this case stored in the the table prim-

feature. Each node is assigned a point with specific coordinates – point
primitive – stored in the table primitive. A primitive is assigned to the node by
an identifier (PID). Such a format makes it easier to conduct operations on
separate points, to use them for calculations, measurements or setting up
another system. The conversion of all the coordinates simultaneously is also
easier. In this format the connection maps of different features may share the
same point primitives. This eliminates the problem of duplicating the same
coordinate values for different features. A change in the coordinates of
a primitive will change the boundaries of all the features containing the
primitive.

The data including point primitives is saved according to the following
rules:

1) The point coordinates are stored as a separate set – point primitives
(table primitive).

2) Each feature consists of elements. A feature is defined by a pair of
identifiers: nazwa klasy (class name) and identyfikator obiektu (feature identi-
fier). An element of the feature may be a point, line, multiline or area.

3) Each element has nodes ordered by their occurrence in the original
project file – i.e. in the order they were digitized.

4) The coordinates of each node are assigned by the identifier (PID) from
the table of primitives (primitive).

Michał Bednarczyk80



No matter what the format of graphical data is in the system, it usually has
to be converted if it is to be displayed on the computer screen or a printout. As
a result, the user can be presented with certain geometrical shapes (lines,
polygons, points, etc.). They are built based on the data collected by the system
and drawn using appropriate software functions responsible for the visual
display. These functions must access the information about the type of the
shape to be drawn, the coordinates of the nodes and, additionally, colour and
line style. They must, independently of how the feature is described, “con-
struct” geometrical shapes to be displayed, on the basis of the data obtained
from, for example, a database. This model of data presentation is analogous to
a simple vector model, where each feature is defined separately, including
geometry. Thus, even if a program uses a completely different format of
storing graphical data, for visualization purposes they will by converted to
a format resembling a simple vector model. A simple vector model, despite
certain drawbacks (resulting, for example, from node repetition for features
sharing a boundary) has undeniable advantages, such as simplicity and display
speed. It focuses on those properties of graphical elements, which are import-
ant for visual representation, and does not require additional interpretation.

Applications which use a relational database, especially over the Internet,
should generate the lowest possible data transfer. A large amount of informa-
tion sent between clients and the server has a significant impact on efficiency.
One way to optimize the cooperation between the program and the database is
to reduce the number of inquires. If the same amount of data can be retrieved
or sent to the server using one or many queries, the time necessary for the
server to send and process the data will be much shorter in the former case.

Taking this into consideration, I decided to take advantage of the possibili-
ties offered by MySQL and implement in it, in accordance with OpenGIS
specification, spatial data types. They are discussed in more detail in the
chapter on MySQL server. OpenGIS specification suggests a feature table
schema, which, apart from descriptive attributes, contains a column with
spatial data type, containing geometric data. Henceforth I will call this table
geometric attribute of the feature. In taking this step I focused on simplicity,
speed and efficiency, which are particularly important when the information is
accessed via the Internet. This is especially true when using the popular SQL,
as processing speed might become a problem.

A similar treatment of geometric data (node coordinates and the identifier
in one record of the same table) has been proposed elsewhere and refered to as
object-oriented topological model (ECKES 2006) or a physical model of
a topological database (LONGLEY et al. 2006). The difference is that in the
physical model a set of topological rules for different classes of features (for
example different buildings cannot be located in the same area, plots cannot

The Implementation of the Spatially Enabled... 81



overlap, etc.) is recorded, together with the information on topological errors
and areas which have been edited, but not yet corrected with respect to
topology. Using this information the system reproduces topological relations
among features on the fly, when requested by the user. This kind of formatting
is used, for example, in ESRI ArcGIS. It need not involve storing the topology
in, for example, the structure of nodes and edges. Consequently, it is not
necessary to reconstruct their geometry every time they are being displayed
and thus to slow down this operation.

The solution described here uses the functions of MySQL server created by
the author, which produce a geometric attribute of the feature based on the
information from the database (point primitives and a map of node connec-
tions). This attribute is naturally recorded and stored in a spatial data type
column, in a specific feature table. Once the feature table is created in this way,
a simple SQL query may retrieve both descriptive attributes and feature
geometry. The output of the query is a single record containing all the
necessary information. This considerably speeds up the loading of data from
the server, which is an important issue on the Internet. The application which
retrieves the data does not need to “assemble” the feature from point primi-
tives and analyse the connection map, because this operation is only done once
after each feature update. This means that the update of the feature geometry
causes the geometric attribute needed for visualization to be updated as well.
This is the method used in my applet – Sipos-klient, The geometric attribute
retrieved by the client is not only used for the visual presentation of the
feature, but, above all, serves as the interface for the identification of the
feature in the database. By clicking on the picture on the computer screen the
user retrieves the feature identifier. This gives him access to any data on the
selected feature, and the possibility to modify it.

The feature tables contain – in compliance with OpenGIS specification –
geometric attribute. The usage of such tables has an additional advantage of
interoperability with other systems reading this format.

As can be seen in Figure 3, the table prim-feature stores the maps of node
connections for all features in the system. This concept of the table prim-

feature was partly determined by technical problems in MySQL routine
implementation. Among others, it is impossible to use a table name in the
routine as an input parameter. As a result, the routine can only operate on
tables whose names are contained in the routine code as constants. The
solution of this problem would offer greater elasticity in constructing database
schemas. For example, it would enable the creation of a separate table with
point primitives for each feature class. I hope it will be possible in forthcoming
editions of MySQL server.

Michał Bednarczyk82



2011010

507611

501309

901208

22547

30806

70705

90804

90303

60202

20301

YXPID

2411droga7

1421droga7

2421droga6

3421droga10

1411droga1

6612dzialka4

5612dzialka5

4612dzialka11

3612dzialka9

2612dzialka8

1612dzialka4

6611dzialka2

5611dzialka11

4611dzialka5

3611dzialka4

2611dzialka3

1611dzialka2

NUMELTYPEELNUMFIDFCLASSNAMEPID

2

3
4

5

8

9

POLYGON((80 90,120 90,130 50,76 50,70 70,80 90))2

POLYGON((20 60,30 90,80 90,70 70,76 50,20 60))1

ASTEXT(GEOMETRY_ATT)FID

a

b

primitive prim_feature

dzialka

11

1

6
7

10

MULTILINESTRING((30 20,54 22), (54 22,80 30,110 20))1

ASTEXT(GEOMETRY_ATT)FID

droga

3

5

8

9
11

1

6
7

10

2

4

Fig. 3. The format of features’ geometric data in database tables: a) – the format of features’
geometric data in a relational database table based on point primitives; b) – the format of features’
geometric data using spatial data types. The geometric attributes have been recorded in the feature
tables in the column GEOMETRY–ATT (only this column and FID identifier are visible in figure)
Source: own work.

The Role of User-Defined Routines in the Process
of Data Processing

The author of this paper has created several MySQL server routines, which
play a rather important part in the process of uploading the data to the server:
pre–proc(), post–proc(), Repair–primitives(), as well as function:
MakeGeometry().

They were designed to automate and simplify the process of exporting and
data processing when working with the system. Once implemented they are an
integral part of the database and can be called in the same way as any standard
command, function or routine.. Besides, because they are stored on the server,
there is an additional possibility to modify what routines do, by editing their

The Implementation of the Spatially Enabled... 83



code. Thus, the process may be modified and improved without the necessity to
tamper with the structure of the application which exports the data. Naturally,
such modifications may only be made by a user with the appropriate authoriz-
ation in the database management system.

The data is uploaded to the server with a program created just for this
purpose – Sipos-eksport. It is a desktop program, written in Object Pascal in
Delphi environment. Its role is to read data from the original MGE-PC
database, convert it into a text file with SQL commands and export it to the
spatially-enabled database on MySQL server, discussed above. The process
uses the routines discussed here, which make it possible to create tables, load
data, convert it to the appropriate format and finalize the process. An sample
content of the data file created to export the data to the server is shown below:

Fig. 4. A sample content of a file with SQL queries which exports descriptive and geometric feature
attributes

Source: own work.

As shown in Figure 4, procedures are called in the appropriate places before
and after the data is loaded by SQL commands. The execution of all calls from
the file results in the data being exported to the server in the appropriate
format, designed by the author.

The procedures mentioned above, pre-proc and post-proc perform the
following actions:

– pre–proc – among others, initializes the export process, creates tempor-
ary tables, assigns identifiers.

– Post–proc – finalizes the data export process, deletes temporary tables.
The role of the routine Repair–primitives() and function MakeGeometry() is

the conversion of the data after it has been exported to the server.
Repair–primitives() deletes the duplicates of primitives. Duplicates of

primitives are deifined as those points, for which the coordinates Xn = Xm and
Yn = Ym, while PID identifiers n ≠ PIDm. Procedure Repair–primitives(), first of
all, deletes the duplicated records in the table primitive so that only one

Michał Bednarczyk84



instance remains. Secondly, it updates the appropriate fields in the table
prim–feature where PIDs of deleted primitives were located and replaces them
with the identifier of the primitive which was not deleted. Duplicates of this
kind occur when linear elements meet (the end of one element meets the
beginning of another) and when features share boundaries. Procedure Re-

pair–primitives() is called directly with: call Repair–primitives().
Funcion MakeGeometry() (Fig. 5) creates and updates geometric attributes

of features in the feature table. The function has the following input par-
ameters: feature identifier (feature–id) and class name (fclassname). The
output is a geometric (spatial) type value. The input data on which the function
operates is taken from the tables primitive and prim–feature. Based on the
information from these tables the function creates and returns geometric
values appropriate for a given feature, using MySQL functions which operate
on spatial data types.

MakeGeometry()

tables:

•primitive

•prim_feature
object’s geometry attribute

get data

make/update

send result

to any out

Fig. 5. The role of the function MakeGeometry()
Source: own work.

Function MakeGeometry() is used as a part of an SQL query, so it can serve
a number of purposes, for example to update geometric values in an feature
table. An example of a query which performs this task is shown below.

– A query updating geometric attributes of all features of the class
autostrada in the table autostrada:
UPDATE autostrada
SET geometry-att=SELECT MakeGeometry(mslink,”autostrada”)

WHERE mslink IN
(SELECT DISTINCT fid FROM prim–feature

WHERE fclassname=”autostrada”);

Result:
All values of geometric attributes will be generated and inserted into the

field geometry–att of the table autostrada.

The Implementation of the Spatially Enabled... 85



When selecting data from a table with spatial data type, geometric at-
tributes are treated in the same way in SQL queries as descriptive attributes.
For this reason they can be retrieved together for a feature or a set of features,
for example:
SELECT mslink,szerokosc,pasy–ruchu,astext(geometry–att) as geometria

FROM autostrada WHERE mslink=3892;
Result: shown in table 1.

Table 1
Result of SQL query

Mslink szerokosc Pasy–ruchu Geometria

3892 10 2 MULTILINESTRING((81058880 43978312,80650010
43893707,80366165 43881624,80172909 43911833,79949457
43990377,79798476 44068921,79587102 44141423,79492733
44158282),(79492733 44158282,79418003 44171632,79280809
44152701),(79280809 44152701,79073766 44123297,78892588
44093088,78669136 44002461,78439644 43905791,78343016
43875582))

Descriptive data is readable immediately after download, independently of
the method used. An application able to read and draw an feature based on
geometric value is needed to see a visualisation of the geometry. This format
can be read, among others, by GRASS – a free GIS system. For the purpose of
this paper the author wrote his own application in Java.

Internet Client

I have written the program Sipos-klient as an example of a tool for data
retrieval from the database discussed in the article. The program can be used
to test the basic capabilities of the database. Its functions make it possible to:

– connect to MySQL database,
– retrieve the classes of features available in the database,
– send a query which selects features – attribute analysis,
– display and browse through features form the selected classes, retrieve

the values of features’ attributes, in a simple way adjust the view of the
displayed feature classes and the results of queries (on/off, colour change,
scaling, movement).

The addition of other functions to the program Sipos-klient, like analytic or
editorial functions, would make it useful for specific purposes expected of this
kind of software.

Michał Bednarczyk86



Sipos-klient connects to MySQL server using a JDBC driver2 for MySQL. It
can be used on a desktop computer or over the Internet. Java technology
makes it possible to run this program under any operating system with
a browser and Java Runtime Environment installed.

Fig. 6. Sipos-klient. Main window
Source: own work.

Figure 6 shows the interface of Sipos-klient run in Firefox browser. The
upper part contains navigation buttons for scaling and scrolling the map, as
well as editing fields for entering database connection parameters. The left-
hand bottom part of the window, which occupies the most space, shows a map
consisting of the feature classes retrieved from the database. The right-hand
side shows the attributes of a selected feature, the key – a list of the displayed
feature classes, a context menu which allows to select a feature class from the
database, buttons which add and remove classes from the list and a window for

2 JDBC – Java Database Connectivity – an interface for Java programs, analogous to ODBC. It
allows to connect to the database using SQL. In order to work with a Java application a database must
have a dedicated driver which uses JDBC interface. For MySQL, Conector/J is one of such drivers. It
translates JDBC calls into MySQL network protocol.

The Implementation of the Spatially Enabled... 87



entering and executing queries for the table with the attributes of the selected
feature class.

Sipos-klient uses a database created earlier using Sipos-eksport. Feature
tables with geometric attributes filled in (field geometry-att) and table feature

are also necessary.
Sipos-klient retrieves geometric attributes of a feature from the database as

binary streams in WKB format. OpenGis (ECKES 2006) specification (OPEN-

GIS Implementation Specification 2005) contains a description of how to
implement structures representing geometry in this format. According to this
description, each geometry is built out of basic elements, such as points (Point)
or linear rings (Linear ring). Each structure consisting of simpler structures
(for example MultiLinestring) is built using already defined features. The
following is an example of a definition of a structure for geometry of
WKBPolygon type in C programming language:
WKBPolygon {
byte byteOrder;
uint32 wkbType; // 3
uint32 numRings;
LinearRing rings[numRings];
};

Y3X3Y2X2Y1X1NP=3Y3X3Y2X2Y1X1NP=3NR=2T=3B=1

1

2 3

explanations:

1 – WKB Polygon

2 – ring 1

3 – ring 2

Fig. 7. Feature geometry in WKB representation. Byte order – little-endian3 (B=1), type POLYGON
(T=3), contains two elements linear ring (NR=2), each consisting of three points (NP=3).
Source: OpenGIS Implementation Specification for Geographic information – Simple feature access –

Part 1: Common architecture. http://www.opengeospatial.org/.

The definitions discussed above have been used to determine how to
represent, buildand manage a map composed of geometrical features. Using
this information, a model of the classes implemented in Sipos-klient has been
designed.

3 Little-endian byte order means that the least significant byte is first. It is an important piece of
information when reading consecutive values in the stream, which determines the order in which
bytes are read.

Michał Bednarczyk88



wkbGeometryType

+wkbPoint: long = 1

+wkbLineString: long = 2

+wkbPolygon: long = 3

+wkbMultiPoint: long = 4

+wkbMultiLineString: long = 5

+wkbMultiPolygon: long = 6

+wkbGeometryCollection: long = 7

Point

~x: double

~y: double

+Read()

LinearRing

~numPoints: long

+Read()

~Draw()

~getPath()

WKBPoint

<<create>>~WKBPoint()
+Read()

~Draw()

WKBLineString

~numPoints: long

<<create>>~WKBLineString()

+Read()
~Draw()

~getPath()

WKBPolygon

~numRings: long

<<create>>~WKBPolygon()

+Read()
~Draw()

~getPath()

WKBMultiLineString

~num_wkbLineStrings: long

<<create>>~WKBMultiLineString()

+Read()

~Draw()

+getPath()

~drawPath()

WKBPointDB

~fid: long

~MBR: Rectangle2D

<<create>>~WKBPointDB()

WKBLineStringDB

~fid: long

~MBR: Rectangle2D

<<create>>~WKBLineStringDB()

WKBMultiLineStringDB

~fid: long

~MBR: Rectangle2D

<<create>>~WKBMultiLineStringDB()

WKBPolygonDB

~fid: long

~MBR: Rectangle2D

<<create>>~WKBPolygonDB()

VectorLayer

~name: String

~fclassname: String

~color: Color = Color.black

~layer: Vector = new Vector()

~selection: Vector = new Vector()

~visible: boolean = true

<<create>>~VectorLayer()

<<create>>~VectorLayer()

+LoadLayer()

+draw()
+drawAll()

+drawSelection()

+findLayerElements()

+makeSelection()

VectorMap

~VectLayers: Vector

~delta_x: double

~delta_y: double

~moveX: double

~moveY: double

~CoordX: double
~CoordY: double

~meX: int

~meY: int

~BMPheight: int

~BMPwidth: int

~scale_fact: double

+actListener: ActionListener

~buffGraphics: Graphics

~offscreen: Image

<<create>>~VectorMap()

~AddLayer()
~removeLayer()

+getVectorLayer()

~drawLayer()

~drawLayer()

~drawLayerSelection()

~drawLayerSelection()

~drawMap()

~drawSelection()

~zoomIn()~zoomIn()

~zoomOut()
~scrollLeft()

~scrollRight()

~scrollUp()

~scrollDown()

+paint()

+update()

+findElements()

+clearSelection()

+addActionListener()

+removeActionListener()
~getObjectFID()

~getSelectedFids()

~getSelectionCount()

+setVisible()

+setColor()

+clear()

1..*

1..*

1

2..*

1..*

1..*1..* 1..*1..*

Geometry

+byteOrder: long

+wkbType: long

<<create>>~Geometry()

~readGeomType()

~readNumPoints()
~countScaleFactor()

~calcXcoord()

~calcYcoord()

~X_BMPtoMap()

~Y_BMPtoMap()

~calcMBR()

~findMax_X()

~findMax_Y()

~findMin_X()

~findMin_Y()
~findMBR()

+jest typu

11

Point

~x: double

~y: double

+Read()

3..*

Fig. 8. UML diagram showing classes in Sipos-klient
Source: own work.

The Implementation of the Spatially Enabled... 89



The flow chart below (Fig. 8) shows the classes which are the most
important for the structure of the inner layer of the program, which operates
on geometric features. The chart does not show the relationships with classes
used in the user interface. The whole structure may be categorised into two
interrelated class areas:

1. Geometric model, with the class Geometry as the main element. Classes
which represent feature types are derived form it.

2. Vector map, consisting of layers, which in turn are constructed as
collections of specific GIS features. Features are assigned to a layer based on
a specified criterion. The default criterion is the membership of a specific class.
However, the model allows the use of other rules, for example the result of
a query which contains features of different classes may be presented as
a separate layer.

There is an intermediate layer between the geometric model and the vector
map. It connects geometric and descriptive attributes. The layer consists of
classes derived from the geometric model classes: WKBPointDB, WKBLines-

tringDB, WKBMultiLinestringDB, WKBPolygonDB. Features in these classes
have an identifier fid linking them to a corresponding record in the attribute
table. This information is used for the identification of the feature by the user,
for example when the user points at the feature on the map and retrieves its
descriptive attributes.

Conclusion

The concept of a spatially-enabled database discussed in this paper is based
mostly on open source software and open standards. The relational MySQL
database management system used here can be used for GIS purposes, as
shown by the functionality of spatial extensions, data types, user-defined
functions and routines described above. The mechanisms of spatial data
processing implemented in MySQL comply with OpenGIS specifications. As
a result, so does the created database. This enables interoperability with other
databases created in the same standard. It should also be noted that MySQL is
available free of charge, which considerably reduces costs.

A spatially-enabled database on a MySQL server makes it possible for its
data to be accessible on the Internet. The data is accessible on the condition
that MySQL is installed on a computer connected to the Internet, with a public
IP address. The data can be accessed with any MySQL client, but it is easier
and more efficient to use a special application, such as Sipos-klient. The best
solution would be for the data to be made accessible on the Internet via
a WWW website. The free Apache or Windows Server 2003 Web Edition may be

Michał Bednarczyk90



used as the HTTP server. It is not the only method of sharing this kind of data
however. More complex solutions can also be employed (for example, using so
called distributed architecture), which additionally use script languages (for
example PHP4, Python, VBScript, JScript i in.), application servers (Apache
Tomcat5, IBM WebSphere Application Server, Oracle Application Server,
Windows Server etc.) and web services (a large number of useful web services
has been proposed in OGC open specifications). MapServer – an environment
for building web applications – can also be used for sharing the data. Access to
the data from a spatially-enabled database may also be provided using a de-
sktop client application, e.g. written in Delphi environment, which directly
accesses the server without the help of a website.

Free software and open standards are becoming more and more popular
not only among individuals and companies, but even governments in Europe
and worldwide. It is reasonable to bear this tendency in mind when choosing
a commercial product. It is often worthwhile to consider its open source
counterparts. It may turn out that despite a smaller number of functions a free
alternative will meet the user’s expectations. The database proposed here as an
answer to a specific problem using open source software and own solutions
shows that the goal can be achieved at a lower financial cost.

Translated by ŁUKASZ ARENDARSKI, MICHAŁ BEDNARCZYK

Accepted for print 22.03.2011

References

AXMARK D., WIDENIUS M. 2007. MySQL 5.0 Reference Manual. MySQL AB.
BANACHOWSKI L. 1998. Bazy danych Tworzenie aplikacji. Akademicka Oficyna Wydawnicza PLJ,

Warszawa.
BEDNARCZYK M. 2005. Oprogramowanie open source na potrzeby systemów informacji przestrzennej na

przykładzie systemu zarządzania relacyjną bazą danych MySQL. Biuletyn Naukowy UWM,
25: 215–222.

BEDNARCZYK M. 2008. Zastosowanie systemu zarządzania relacyjną bazą danych MySQL do auto-

matyzacji przetwarzania informacji geograficznej. Biuletyn Naukowy UWM, 29: 5–15.
ECKES K. 2006. Modelowanie rzeczywistości geograficznej w systemach informacji przestrzennej.

Roczniki Geomatyki, IV(2): 43–73.
GAŻDZICKI J. 2007. Standardy otwarte w geomatyce. Roczniki Geomatyki, V(2): 7–11.
HAMLET D., MAYBEE J. 2003. Podstawy techniczne inżynierii oprogramowania. Wydawnictwo

Naukowo-Techniczne, Warszawa.
LONGLEY P.A., GOODCHILD M.F., MAGUIRE D.J., RHIND D.W. 2006. GIS Teoria i praktyka. Wydawnictwo

Naukowe PWN, Warszawa.

4 PHP, an Apache HTTP server and a MySQL database server on a Linux system are a very
common Open Source software bundle for a website (so called LAMP solution stack).

5 These are J2EE (Java 2 Platform Enterprise Edition) application servers, with Java the
programming language. Of these, only IIS as a Microsoft product supports ASP.NET technology
(VBScript, JScript lannguages).

The Implementation of the Spatially Enabled... 91



OpenGIS Implementation Specification for Geographic information – Simple feature access – Part 1.
Common architecture. 2005. OGC (Open Geospatial Consortium), http://www.opengeos-
patial.org/.

OpenGIS Implementation Specification for Geographic information – Simple feature access – Part 2.
SQL option. 2005. OGC (Open Geospatial Consortium), http://www.opengeospatial.org/.

STONES R., MATTHEW N. 2003. Bazy danych i MySQL od podstaw. HELION, Gliwice.
STARZYŃSKI P. 2004. Zamówienia publiczne a Open Source – stan prawny. In: Budowa społeczeństwa

informacyjnego w Polsce i Unii Europejskiej. Ed. P. Bała. Uniwersytet Mikołaja Kopernika,
Toruń, pp. 107–109.

Michał Bednarczyk92


