TECHNICAL SCIENCES
Abbrev.: Techn. Sc., 2011, 14(1)

STABILITY OF OPTIMAL PARAMETERS
FOR CLASSIFIER BASED ON SIMPLE GRANULES
OF KNOWLEDGE

Piotr Artiemjew

Chair of Mathematical Methods in Computer Sciences
University of Warmia and Mazury in Olsztyn

Key words: rough sets, rough inclusions, granules of knowledge, classification of data, missing
values, stability of optimal parameters.

Abstract

Searching for optimal parameters of a classifier based on simple granules of knowledge
investigated recently by the author (ArRTIEMJEW 2010) raises a question about stability of optimal
parameters. In this article, we will check dependence of stability of the optimal radius of granulation
on random damage of decision system. The results of experiments show the dependence of stability on
size of damage and strategies of treating missing values. This kind of research aims at finding
methods of protecting decision systems which are vulnerable to damage against decreasing their
classification effectiveness, which means preserving classifying possibilities similar to undamaged
decision systems.
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Abstrakt

Przeprowadzone w ostatnim czasie badania (ARTIEMJEW 2010) zmierzajgce do wyszukiwania
optymalnych parametréw klasyfikacji moduléw decyzyjnych opartych na prostych granulach wiedzy
zrodzily pytanie o stabilno$é optymalnych parametréw klasyfikacji. W pracy sprawdzono zaleznoéé
stabilnoS§ci optymalnych promieni granulacji od losowego uszkadzania systemu decyzyjnego. Wyniki
badan wskazaly jednoznacznie, ze istnieje zalezno$¢ miedzy stabilnoécig a wielkoScig uszkodzenia



58 Piotr Artiemjew

i strategiami traktowania wartoéci uszkodzonych. Tego typu badania majg na celu szukanie metod
zabezpieczania systeméw decyzyjnych, ktore sg podatne na uszkodzenia, przed zmniejszaniem ich
efektywnosci klasyfikacyjnej. Celem bylo zachowanie mozliwoéci klasyfikacyjnych zblizonych do
efektywnos$ci nieuszkodzonych systeméw decyzyjnych.

Introduction

Knowledge is understood here as ability to classify and as far as real
phenomena are considered, the frame is that of information systems each of
which is a pair I = (U, A) where U is a set of objects, entities, and A is a set of
attributes; decision system is a triple DS = (U, A, d), where d ¢ A. The basic
form of granulation in decision and information systems consists in partition-
ing U into classes of the indiscernibility relation IND(A) defined as IND(A)
= {(w, v) : alu) = a(v), Va € A}. Each class [uls = {v € U : INDy(u, v)} is
interpreted as a elementary granule and unions of elementary granules are
granules of knowledge. Another approach to granulation, proposed by (POL-
KOWSKI 2008), consists in using rough inclusions, cf. (POLKOWSKI 2008).

A rough inclusion is a relation u ¢ U x U x [0,1] which can be regarded as
graded similarity relation extending the indiscernibility relation by relaxing
restrictions on attribute values. We let IND(u, v) = {a € A : a(u) = a(v)}.

In our approach we use rough inclusion proposed by (POLKOWSKI 2008), to
classify test objects. Test object is classified by granules, which have been
formed from training set as follows,

| IND(w, v)|
Al

Eraen@) = {velU: > Fgran)

where rgan € [0,1] is the granulation radius.

The most numerous decision class transfers decision to our testing object.
If tie occurs, it is resolved by a random choice. This type of classification is the
simplest among studied by the author cf. (ARTIEMJEW 2008, 2009, POLKOWSKI,
ARTIEMJEW 2007). The results of research for optimal parameters for this
method is available in (ARTIEMJEW 2010). In this work we continue this
approach and our main purpose is to find the threshold of the optimal
parameter stability for the random damage of the decision system.

In the work (ARTIEMJEW 2010) we have proposed a method for experimen-
tal detecting of the optimal radius value for a given data set, by means of
multiple CV-5 and subsequent confirmation by means of Leave One Out
method. Once the optimal value is found for the test data, it can be used for
classifying incoming objects without any need for full granulation procedure.
For the multiple damage of the decision system in fixed percentage, the
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stability of optimal parameter is checked by Leave One Out Method. Optimal
radius of classification is stable if despite the damage of the decision system it
is still the same and fulfills the criterion of optimality, which is a maximal
value of accuracy within coverage in the range of [0.9, 1.0].

Classification by simple granules of knowledge
theoretical background

Rough inclusion generally is a predicate of the form u, (x, y, r), where
x, y are individual objects,  €[0,1], which satisfies the following requirements,
relative to a given part relation 7 on a set U of individual objects, see
(POLKOWSKI 2008),
D ur (x, y, 1) & ing, (x, y);
2) ptr (o, y, 1) = (e (2, %, 1) = 4y (2, 9, 7)]
3 U, x, y, ) As<r= u, ,y,s)

Those requirements seem to be intuitively clear. 1) demands that the
predicate u, is an extension to the relation ing, of the underlying system of
Mereology; 2) does express monotonicity of u,, and 3. assures the reading. “to
degree at least r”. We use here only one rough inclusion, albeit a fundamental
one, viz., (POLKOWSKI 2008) for its derivation,

| IND (&, v)|
—_—
|A |

u, w, v, r)

A granule g, (u, r) about u € U of the radius r, relative to 4, is defined by
letting,
gy w, r) is CIsF (u, r),

where the property F(u, r) is satisfied with an object v if and only if u (v, u, )
holds, and Cls is the class operator, see, e.g., (POLKOWSKI 2008). Practically, in
case of u;, the granule g(u, r) collects all ve U such that | IND(v, u)|>r-|Al

Error evaluation

Classifiers are evaluated by error which is the ratio of the number of
correctly classified objects to the number of recognized test objects (called also

total accuracy) and total coverage where is the number of recognized test

rec
' Tost’
cases and test is the number of test cases.

The results by Leave One Out method should be modified. We build for

Leave One Out method the confusion matrix, where testing objects from all
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folds are treated as one test decision system, and we compute accuracy as
percentage of correctly classified testing objects. Coverage is a percent of
objects which have been classified. The motivation to use Leave One Out
method is to be found, among other places in (MOLINARO, SIMON, PFEIFFER
2005). This paper proves the effectiveness and almost unbiased character of
this method.

Voting by granules on decision values

Given a granule g = g,,,,, () of test objects u in a training decision system
(Ui, 4, d), for each test object u, the value of decision assigned to u by the
granule g is defined as, d(u) = d’ such that, for D as the set of granule’s g,.,,..,, (W)
decision classes,

d’={d” e D:max |{ve Ergeen @) 1 d(v) = d”} I}

in case of tie, random choice is applied.

The procedure of classification by means
of Standard Granules (CSG algorithm)

1. The training decision system (U, A, d) and the test system (Ui, A, d)
has been input, where U, Uy, is respectively universe of test and training
objects, A is a set of attributes and d is a decision reflecting a partition of
objects into classes.

0 1 card{A}
card{A}’ card{A}’"" card{A}

2. The granular radius rga, € { } has been

chosen.

3. For classified test object u € Uy, the classification granule 8rgran (u) has
been found in the training set U, as follows, Ergran w) = {ve Uy :
: ﬂ'%(lri)l > I'gran}, Where rgan € [0,1].

4. The most numerous decision class of granule g,,,,,, («) transfers decision
to our test object. If tie occurs, it is resolved randomly.

Empirical method of checking the stability
of the optimal parameters

By the x percent damage of the decision system (U, A, d), we mean that we
insert a number of x%*| Al*| Ul random stars inside the system. Credit
Approval (UCI Repository) contains a little bit of original missing values
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marked as ”?”, but it doesn’t matter for us, because we treat these missing
values as additional descriptors. Only artificial damage created by stars is
considered as missing values. As we can see in Figure 1, the stability of optimal
parameter is checked by five times random damage of the original decision
system and classified by the leave one out method, where finally we obtain an
average result. Radius is stable when in spite of the damage is the same as
original decision system optimal radius.

random damage

first x% damage

leave one out }—\
second x% damage leave one out l/_\‘ \q
original It
decision W average resu
third x% damage leave one out l-——>0f the 5x leave
system g one out
\ fourth x% damage leave one out L\—/'/‘

fifth x% damage M leave one out

Fig. 1. Stability checking method of the optimal radius for the classifier based on simple granules
of knowledge (CSG)

Methods for treating missing values

During the classification of the damaged decision system by simple gran-
ules of knowledge we are considering two ways of treating missing values. The
first one is ,,*=*" and the second one is strategy ,,*=don’t care”. For both
strategies we are using the same damaged decision systems. For instance for
Credit Approval (UCI Repository) decision system we are damaging
x%*15%690 descriptors. Details of percentage damaged for the considered

decision system are shown in Table 1.

Table 1
Detailed information regarding the percentage damage of Credit Approval (UCI Repository); Damper
= Percentage damage of decision system, Starnum = Number of stars in damaged decision system

Damper [%] Starnum Damper [%] Starnum Damper [%] Starnum
1 103 6 621 15 1552
2 207 7 724 20 2070
3 310 8 828 25 2587
4 414 9 931 30 3105
5 517 10 1035
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Results of experiments for the strategy ,,*=*"

Results for Credit Approval at percentage damage from interval
[1% to 10%]

At first we would like to show results in details for the first one-percentage-
damage, see Table 2. Short description for all 1 percentage damage and average
result we can see in Table 3 and finally, in Figure 2 we can see visualization of
error for all 1 percentage damage. The results for damages from interval 2% to
10% will be shown in the short form only, see Table 4 and 5.

Table 2

,, ¥ =*": Leave One Out; First 1% damage; Credit Approval (UCI Repository); Classification by means

of standard granules (CSG); rgan = Granulation radius, T'.,.. = Total accuracy, T'.., = Total coverage,

M. gan = The mean percentage size of classification granule in training system; The best results for:
Fgran = 0.6, T.occ = 0.846497, T..oy = 0.972464, M. gan = 24.3942

Tgran T.ace T.cov M. gan
0 0.555072 1 689
0.0666667 0.555072 1 687.104
0.133333 0.555072 1 673.4
0.2 0.573913 1 633.51
0.266667 0.750725 1 559.814
0.333333 0.826087 1 442 .325
0.4 0.824638 1 296.896
0.466667 0.833091 0.998551 165.516
0.533333 0.836972 0.995652 73.2928
0.6 0.846497 0.972464 24.3942
0.666667 0.837113 0.702899 5.53623
0.733333 0.838093 0.304348 0.802899
0.8 0.833333 0.0695652 0.110145
0.866667 0.750001 0.0173913 0.0376812
0.933333 0.799999 0.00724638 0.0115942
1 0 0 0
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Table 3

»¥=%*"; Leave One Out; All results for 1% of the damage; Credit Approval (UCI Repository);

Classification by means of standard granules (CSG); Optimal.rg., = Optimal granulation radius, T ...

= Total accuracy, T..., = Total coverage, M., = The mean size of classification granule in training
system, M., = Mean training table size

M. gan
Optimal.rgan T e Tcov M.gran i, 100%
[%]
nil 0.6 0.860327 0.975362 26.7913 3.89
First 1% damage 0.6 0.846497 0.972464 24.3942 3.54
Second 1%damage 0.6 0.856049 0.946377 23.8667 3.46
Third 1% damage 0.6 0.854572 0.966667 23.7594 3.45
Fourth 1% damage 0.6 0.861862 0.965217 23.7275 3.44
Fifth 1% damage 0.6 0.857576 0.956522 23.7768 3.45
Average result 0.6 0.855312 0.96145 23.905 3.47

Total Accuracy

% 3¢ Total Coverage
Mean granule size

100 2 > * -

90 1

80 4

70 A

60 4

50 4

40 +

30 4

20 1

10 1

0 0.2 0.466667 0.733333 1
0.0666667 0.333333 0.6 0.866667

Fig. 2. ,*="*"; Leave One Out; Average results of experiments and error visualization for all 1% of the
(max — min)
damage; — s Credit Approval (UCI Repository); Classification by means of standard

granules (CSG); rgan = Granulation radius, T.... = Total accuracy, T..., = Total coverage, M.gan
= The mean percentage size of classification granule in training system; The best results for: rgan
= 0.6, T.pec = 0.855312, T.cov = 0.96145, M. o0 = 23.905
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Table 4

»¥=*"; Leave One Out; Average results for all damage; Credit Approval (UCI Repository); Classifica-

tion by means of standard granules (CSG); Damper = Percentage damage of decision system,

Optimal.rg., = Optimal granulation radius, T.... = Total accuracy, T..., = Total coverage, M.gan
= The mean size of classification granule in training system, M., = Mean training table size

»¥=*": Leave One Out; Table of errors’ percentage for all damage;

(max — min.)

2

Damper Optimal.r T T M Moo 100%
) Tgran " ace - cov gran M.
[%]
nil 0.6 0.860327 0.975362 26.7913 3.89
1 0.6 0.855312 0.96145 23.905 3.47
2 0.6 0.850606 0.935074 20.5066 2.98
3 0.6 0.85161 0.92174 17.607 2.56
4 0.533333 0.84138 0.990436 52.3532 7.6
5 0.533333 0.844274 0.984638 46.987 6.82
6 0.533333 0.837318 0.98348 43.0766 6.25
7 0.533333 0.83784 0.975942 39.0534 5.67
8 0.533333 0.835582 0.973044 35.5524 5.16
9 0.533333 0.833924 0.97565 31.2922 4.54
10 0.466667 0.834204 0.99826 81.524 11.83
Table 5

; Credit Approval

(UCI Repository); Classification by means of standard granules (CSG); Damper = Percentage damage
of decision system, Optimal.rg., = Optimal granulation radius, T'... = Total accuracy, T..., = Total
coverage, M.,., = The mean size of classification granule in training system

Damper Optimal.7yan T.ace T.cov M. gran

[%] [%] [%] (%]

1 0.6 0.76 (+-)1.3 (+-)0.0483
2 0.6 (+-)0.54 (+-)0.94 (+-)0.0538
3 0.6 (+-)1.48 (+-)0.79 (+-)0.0961
4 0.533333 (+-)0.69 (+-)0.43 (+-)0.2614
5 0.533333 (+-)1.08 (+-)0.43 (+-)0.1962
6 0.533333 (+-)0.67 (+-)0.57 (+-)0.2711
7 0.533333 (+-)1.61 (+-)0.65 (+-)0.2097
8 0.533333 (+-)1.15 (+-)0.5 (+-)0.2908
9 0.533333 (+-)1.15 (+-)0.28 (+-)0.1079
10 0.466667 (+-)0.73 (+-)0.07 (+-)0.3075
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Additional result for Wisconsin Diagnostic Breast Cancer
data set

In Table 6 additional results obtained from classification by means of
simple granular structures, for the damage in range 1 to 7% are collected.

Table 6
»¥=%"; Leave One Out; Average results for all damage; Wisconsin Diagnostic Breast Cancer (UCI
Repository); Classification by means of standard granules (CSG); Damper = Percentage damage of
decision system, Optimal.ry,, = Optimal granulation radius, T.,.. = Total accuracy, T...,, = Total
coverage, M. .., = The mean size of classification granule in training system, M., = Mean training

table size
Damper Optimal T T M T 1005

%] Tgran " ace - cov - gran M.
[%]
nil 0258065 | 0870722 | 0924429 | 33.7047 5.93
1 0.258065 | 0.874908 | 0921616 | 30.8408 5.43
2 0.258065 | 0.875358 | 0907908 | 28.6496 5.04
3 0.258065 | 0.879718 | 0908964 | 26.168 461
4 0258065 | 0877342 | 0902638 | 23.6408 416
5 0.258065 | 0.873384 | 0902286 | 22.9652 3.9
6 0.258065 | 0.87183 0902284 | 21.084 3.58
7 0.225806 | 0.855392 | 096485 46,9272 7.97

A summary for the strategy ,,*=*"

At the fixed optimality condition: Optimal.rgan = {rgan : for maximal
accuracy at coverage € [0.9,1.0]}, within ,*=*" strategy for Credit Approval
(UCI Repository) the optimality of the radius during classification is stable for
damages of 1, 2, 3%. Above three percent, beginning from 4% coverage for
radius 7gan = 0.6 is becoming smaller than 0.9, hence, in spite of maximal
accuracy, our radius ceases being optimal. For damages of 4-7% accuracy is
still maximal for radius 0.6, but coverage € [0.8; 0.9]. Starting from 8% to 10%,
the best accuracy is for radius 0.533333. For 10% damage at rgan = 0.6
coverage € [0.7, 0.8). Finally when we are applying the strategy ,,*=*" during
the classification CSG, stability of the optimum is low and is kept for 1,2 and
3% damage. However, the level of accuracy is high for this damage. Classifica-
tion error resulting from randomization of damage is following. for 1-3%
damage T.accerror € [0.54%, 1.48%], T.cov.error € [0.79%, 1.3%], for 4-7% damage
T.accerror € [0.88%, 1.29%], T.coverror € [0.86%, 1.52%] and finally for 8-10%
damage T..ccerror € [1.21%, 1.45%], T. cov.crror € [0.79%, 2.17%]. Result shows that
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there is no bigger dependency between the classification error resulting from
randomization and the percentage of damage.

Preserving the radius’ optimality is dependent on the classification granule
size. The bigger the damage is, the coverage and M. ., for originally optimal
radius becomes smaller. The optimum is moving to the direction of the radius
0.533333 for which classification granules have similar size to classification
granules of the originally optimal radius. It is possible to predict that the
optimum with the increase of the damage will fall down. The additional result
for Wisconsin Diagnostic Breast Cancer (UCI Repository) see Table 6 confirm
this hypothesis.

Results for the strategy ,,=don’t care”

Results for Credit Approval at percentage damage from interval
[1 to 10%] and 15, 20, 25, 30%

The results for damages from interval 1 to 10% and 15, 20, 25, 30% will be
shown in the short form only, see Table 7.

Table 7
» =don’t care”; Leave One Out; Average results for all damage; Credit Approval (UCI Repository);
Classification by means of standard granules (CSG); Damper = Percentage damage of decision
system, Optimal.rg,., = Optimal granulation radius, T'.... = Total accuracy, T'..,, = Total coverage,
M. ,.n = The mean size of classification granule in training system, M., = Mean training table size

Damper Optimal T T M 1005
%] Tgran ~acc “cov -gran M.
[%]

il 0.6 0860327 | 0975362 | 26.7913 3.89
1 0.6 0.854102 | 0977392 | 29.2134 424
2 0.6 0.843688 | 0975362 | 305474 443
3 0.6 0.84391 0.97855 32.446 471
4 0.6 0.843138 | 0.98319 35.3892 5.14
5 0.6 0.84488 0.9829 36.4368 5.29
6 0.6 0.837492 | 0988116 | 40.021 5.81
7 0533333 | 0836474 | 099971 | 109.477 15.89
8 0.6 0.834058 | 0993912 | 451226 6.55
9 0.6 0.833386 | 0993332 | 459836 6.67
10 0533333 | 0827828 | 1 121.15 17.58
15 0.6 0.822166 | 0.99913 67.351 9.78
20 0.6 0807246 | 1 91.8064 13.3
25 0533333 | 0797104 | 1 234,658 34.06
30 0.666667 | 0.794494 | 1 70.849 10.28
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Additional result for Wisconsin Diagnostic Breast Cancer
data set

We include in Table 8 additional results obtained from classification by
means of simple granular structures, for the damage in range 1 to 5%.

A summary for the strategy ,,*=don’t care”

In considered strategy for Credit Approval (UCI Repository) stability of
optimal radius is higher than in strategy ,,*=*". Optimal radius is preserved
for 1-6% damage. Granules are being extended in this strategy and at the
moment when they have too large noise inside the optimum is being lost.
Starting from 7% damage, optimal radius is instable and reaches values 0.6 or
0.533333. At this method at the increase of damage, the coverage is growing to
1 because of the classifying granules’ extension. The optimum is moving to the
direction of radius 0.666667.

It is possible to expect that the optimal radius with the increase of the
damage will move up. The additional result for Wisconsin Diagnostic Breast
Cancer (UCI Repository) see Table 8 confirm this hypothesis.

Table 8

,»*=don’t care”; Leave One Out; Average results for all damage; Wisconsin Diagnostic Breast Cancer

(UCI REPOSITORY); Classification by means of standard granules (CSG); Damper = Percentage

damage of decision system, Optimal.r,.,, = Optimal granulation radius, T'... = Total accuracy, T'.cov

= Total coverage, M.g., = The mean size of classification granule in training system, M., = Mean
training table size

Damper Optimal T T M 1005

%] Tgran ~acc -cov -gran M.

[%]

il 0258065 | 0870722 | 0924429 | 33.7047 5.93

1 0.258065 | 0.862936 | 0.956766 | 415476 731

2 0290323 | 0869142 | 0919506 | 23.9922 492

3 0290323 | 0837724 | 0.9529 29.8426 5.95

4 0.322581 | 0.844062 | 0914938 | 157237 2.77

5 0.322581 | 0.79595 0939192 | 20.22 3.43%

Conclusions

It follows from experiments that for small damage of decision system in the
range of few percent, optimal parameters for the classifier basing on simple
granules of knowledge maintain optimality. Range of the optimality is depend-
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ent on the strategy of treating missing values during classification and the
decision system structure. For the exemplary Credit Approval (UCI Reposi-
tory) system at the damage interval from 1 to 6% and strategy of treating
missing values ,,*=don’t care”, the decision system still contains the same
optimal parameter. For the strategy ,,*="*" stability is saved only for 1 to 3%
damage, but in this case we have obtained better accuracy of classification than
in strategy ,,*=don’t care”. For Wisconsin Diagnostic Breast Cancer (UCI
Repository) at strategy ,,*=don’t care” optimal radius is saved only for 1%
damage and for the strategy ,,*=*" optimum is preserved for damage from
interval 1 to 6%. Generally we can say that at ,*=*" strategy optimal radius
with the increase of the damage will move down and for ,*=don’t care”
strategy it will move up. Finally the optimum of CSG is more stable for the
strategy ,,*="*".

From the engineering point of view, obtaining an answer to the question of
how to preserve stable level of classification in the case of real software and
hardware discrete decision systems is really important, particularly if these
decision systems are susceptible to noise and to damage conditional informa-
tion. Thanks to such knowledge it is possible to design decision modules which
are damage-resistant and are automatically adaptable to new conditions. In
the future work, we will check the relation between the amount of information
and stability of optimal parameters of classification based on simple granules
of knowledge.
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