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A b s t r a c t

Searching for optimal parameters of a classifier based on simple granules of knowledge

investigated recently by the author (ARTIEMJEW 2010) raises a question about stability of optimal

parameters. In this article, we will check dependence of stability of the optimal radius of granulation

on random damage of decision system. The results of experiments show the dependence of stability on

size of damage and strategies of treating missing values. This kind of research aims at finding

methods of protecting decision systems which are vulnerable to damage against decreasing their

classification effectiveness, which means preserving classifying possibilities similar to undamaged

decision systems.
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A b s t r a k t

Przeprowadzone w ostatnim czasie badania (ARTIEMJEW 2010) zmierzające do wyszukiwania

optymalnych parametrów klasyfikacji modułów decyzyjnych opartych na prostych granulach wiedzy

zrodziły pytanie o stabilność optymalnych parametrów klasyfikacji. W pracy sprawdzono zależność

stabilności optymalnych promieni granulacji od losowego uszkadzania systemu decyzyjnego. Wyniki

badań wskazały jednoznacznie, że istnieje zależność między stabilnością a wielkością uszkodzenia



i strategiami traktowania wartości uszkodzonych. Tego typu badania mają na celu szukanie metod

zabezpieczania systemów decyzyjnych, które są podatne na uszkodzenia, przed zmniejszaniem ich

efektywności klasyfikacyjnej. Celem było zachowanie możliwości klasyfikacyjnych zbliżonych do

efektywności nieuszkodzonych systemów decyzyjnych.

Introduction

Knowledge is understood here as ability to classify and as far as real

phenomena are considered, the frame is that of information systems each of

which is a pair I = (U, A) where U is a set of objects, entities, and A is a set of

attributes; decision system is a triple DS = (U, A, d), where d ∉ A. The basic

form of granulation in decision and information systems consists in partition-

ing U into classes of the indiscernibility relation IND(A) defined as IND(A)

= {(u, ν) : a(u) = a(ν), ∀a ∈ A}. Each class [u]A = {ν ∈ U : INDA(u, ν)} is

interpreted as a elementary granule and unions of elementary granules are

granules of knowledge. Another approach to granulation, proposed by (POL-

KOWSKI 2008), consists in using rough inclusions, cf. (POLKOWSKI 2008).

A rough inclusion is a relation µ ⊆ U × U × [0,1] which can be regarded as

graded similarity relation extending the indiscernibility relation by relaxing

restrictions on attribute values. We let IND(u, ν) = {a ∈ A : a(u) = a(ν)}.

In our approach we use rough inclusion proposed by (POLKOWSKI 2008), to

classify test objects. Test object is classified by granules, which have been

formed from training set as follows,

grgran(u) = {ν ∈U :
 IND(u, ν)

≥ rgran}
 A

where rgran ∈ [0,1] is the granulation radius.

The most numerous decision class transfers decision to our testing object.

If tie occurs, it is resolved by a random choice. This type of classification is the

simplest among studied by the author cf. (ARTIEMJEW 2008, 2009, POLKOWSKI,

ARTIEMJEW 2007). The results of research for optimal parameters for this

method is available in (ARTIEMJEW 2010). In this work we continue this

approach and our main purpose is to find the threshold of the optimal

parameter stability for the random damage of the decision system.

In the work (ARTIEMJEW 2010) we have proposed a method for experimen-

tal detecting of the optimal radius value for a given data set, by means of

multiple CV-5 and subsequent confirmation by means of Leave One Out

method. Once the optimal value is found for the test data, it can be used for

classifying incoming objects without any need for full granulation procedure.

For the multiple damage of the decision system in fixed percentage, the
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stability of optimal parameter is checked by Leave One Out Method. Optimal

radius of classification is stable if despite the damage of the decision system it

is still the same and fulfills the criterion of optimality, which is a maximal

value of accuracy within coverage in the range of [0.9, 1.0].

Classification by simple granules of knowledge
theoretical background

Rough inclusion generally is a predicate of the form µπ (x, y, r), where

x, y are individual objects, r ∈[0,1], which satisfies the following requirements,

relative to a given part relation π on a set U of individual objects, see

(POLKOWSKI 2008),

1) µπ (x, y, 1) ⇔ ingπ (x, y);

2) µπ (x, y, 1) ⇒ [µπ (z, x, r) ⇒ µπ (z, y, r)]

3) µπ (x, y, r) ∧ s < r ⇒ µπ (x, y, s)

Those requirements seem to be intuitively clear. 1) demands that the

predicate µπ is an extension to the relation ingπ of the underlying system of

Mereology; 2) does express monotonicity of µπ, and 3. assures the reading. “to

degree at least r”. We use here only one rough inclusion, albeit a fundamental

one, viz., (POLKOWSKI 2008) for its derivation,

µL (u, ν, r) ⇔
 IND (u, ν)

≥ r.
 A

A granule gµ (u, r) about u ∈ U of the radius r, relative to µ, is defined by

letting,

gµ (u, r) is ClsF (u, r),

where the property F(u, r) is satisfied with an object ν if and only if µ (ν, u, r)

holds, and Cls is the class operator, see, e.g., (POLKOWSKI 2008). Practically, in

case of µL the granule g(u, r) collects all ν ∈ U such that  IND(ν, u) ≥ r · A.

Error evaluation

Classifiers are evaluated by error which is the ratio of the number of

correctly classified objects to the number of recognized test objects (called also

total accuracy) and total coverage,
rec

, where is the number of recognized test
test

cases and test is the number of test cases.

The results by Leave One Out method should be modified. We build for

Leave One Out method the confusion matrix, where testing objects from all
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folds are treated as one test decision system, and we compute accuracy as

percentage of correctly classified testing objects. Coverage is a percent of

objects which have been classified. The motivation to use Leave One Out

method is to be found, among other places in (MOLINARO, SIMON, PFEIFFER

2005). This paper proves the effectiveness and almost unbiased character of

this method.

Voting by granules on decision values

Given a granule g = grgran (u) of test objects u in a training decision system

(Utrn, A, d), for each test object u, the value of decision assigned to u by the

granule g is defined as, d(u) = d’ such that, for D as the set of granule’s grgran (u)

decision classes,

d’ = {d” ∈ D : max  {ν ∈ grgran (u) : d(ν) = d”}}

in case of tie, random choice is applied.

The procedure of classification by means
of Standard Granules (CSG algorithm)

1. The training decision system (Utrn, A, d) and the test system (Utst, A, d)

has been input, where Utst, Utrn is respectively universe of test and training

objects, A is a set of attributes and d is a decision reflecting a partition of

objects into classes.

2. The granular radius rgran ∈ {
0

,
1

,...,
card{A}

} has been
card{A} card{A} card{A}

chosen.

3. For classified test object u ∈ Utst, the classification granule grgran (u) has

been found in the training set Utrn as follows, grgran (u) = {ν ∈ Utrn :

:
 IND(u,ν)

≥ rgran}, where rgran ∈ [0,1].
 A

4. The most numerous decision class of granule grgran (u) transfers decision

to our test object. If tie occurs, it is resolved randomly.

Empirical method of checking the stability
of the optimal parameters

By the x percent damage of the decision system (U, A, d), we mean that we

insert a number of x%* A* U random stars inside the system. Credit

Approval (UCI Repository) contains a little bit of original missing values
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marked as ”?”, but it doesn’t matter for us, because we treat these missing

values as additional descriptors. Only artificial damage created by stars is

considered as missing values. As we can see in Figure 1, the stability of optimal

parameter is checked by five times random damage of the original decision

system and classified by the leave one out method, where finally we obtain an

average result. Radius is stable when in spite of the damage is the same as

original decision system optimal radius.

leave one out

leave one out

leave one out

leave one out

leave one out

random damage

original
decision
system

first % damagex

second % damagex

third % damagex

fifth % damagex

fourth % damagex

average result
of the 5 leave

one out
x

Fig. 1. Stability checking method of the optimal radius for the classifier based on simple granules

of knowledge (CSG)

Methods for treating missing values

During the classification of the damaged decision system by simple gran-

ules of knowledge we are considering two ways of treating missing values. The

first one is „*=*” and the second one is strategy „*=don’t care”. For both

strategies we are using the same damaged decision systems. For instance for

Credit Approval (UCI Repository) decision system we are damaging

x%*15*690 descriptors. Details of percentage damaged for the considered

decision system are shown in Table 1.

Table 1

Detailed information regarding the percentage damage of Credit Approval (UCI Repository); Damper

= Percentage damage of decision system, Starnum = Number of stars in damaged decision system

Damper [%] Starnum Damper [%] Starnum Damper [%] Starnum

1 103 6 621 15 1552

2 207 7 724 20 2070

3 310 8 828 25 2587

4 414 9 931 30 3105

5 517 10 1035
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Results of experiments for the strategy „*=*”

Results for Credit Approval at percentage damage from interval
[1% to 10%]

At first we would like to show results in details for the first one-percentage-

damage, see Table 2. Short description for all 1 percentage damage and average

result we can see in Table 3 and finally, in Figure 2 we can see visualization of

error for all 1 percentage damage. The results for damages from interval 2% to

10% will be shown in the short form only, see Table 4 and 5.

Table 2

„*=*”; Leave One Out; First 1% damage; Credit Approval (UCI Repository); Classification by means

of standard granules (CSG); rgran = Granulation radius, T.acc = Total accuracy, T.cov = Total coverage,

M.gran = The mean percentage size of classification granule in training system; The best results for:

rgran = 0.6, T.acc = 0.846497, T.cov = 0.972464, M.gran = 24.3942

rgran T.acc T.cov M.gran

0 0.555072 1 689

0.0666667 0.555072 1 687.104

0.133333 0.555072 1 673.4

0.2 0.573913 1 633.51

0.266667 0.750725 1 559.814

0.333333 0.826087 1 442.325

0.4 0.824638 1 296.896

0.466667 0.833091 0.998551 165.516

0.533333 0.836972 0.995652 73.2928

0.6 0.846497 0.972464 24.3942

0.666667 0.837113 0.702899 5.53623

0.733333 0.838093 0.304348 0.802899

0.8 0.833333 0.0695652 0.110145

0.866667 0.750001 0.0173913 0.0376812

0.933333 0.799999 0.00724638 0.0115942

1 0 0 0
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Table 3

„*=*”; Leave One Out; All results for 1% of the damage; Credit Approval (UCI Repository);

Classification by means of standard granules (CSG); Optimal.rgran = Optimal granulation radius, T.acc

= Total accuracy, T.cov = Total coverage, M.gran = The mean size of classification granule in training

system, M.trn = Mean training table size

M.gran
· 100%

M.trn

[%]

Optimal.rgran T.acc T.cov M.gran

nil 0.6 0.860327 0.975362 26.7913 3.89

First 1% damage 0.6 0.846497 0.972464 24.3942 3.54

Second 1%damage 0.6 0.856049 0.946377 23.8667 3.46

Third 1% damage 0.6 0.854572 0.966667 23.7594 3.45

Fourth 1% damage 0.6 0.861862 0.965217 23.7275 3.44

Fifth 1% damage 0.6 0.857576 0.956522 23.7768 3.45

Average result 0.6 0.855312 0.96145 23.905 3.47

100

Total Accuracy

Total Coverage

Mean granule size

90

80

70

60

50

40

%

30

20

10

0 0.2
0.6

1

rgran

0.0666667 0.333333
0.466667 0.733333

0.866667

Fig. 2. „*=*”; Leave One Out; Average results of experiments and error visualization for all 1% of the

damage;
(max – min)

; Credit Approval (UCI Repository); Classification by means of standard
2

granules (CSG); rgran = Granulation radius, T.acc = Total accuracy, T.cov = Total coverage, M.gran

= The mean percentage size of classification granule in training system; The best results for: rgran

= 0.6, T.acc = 0.855312, T.cov = 0.96145, M.gran = 23.905
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Table 4

„*=*”; Leave One Out; Average results for all damage; Credit Approval (UCI Repository); Classifica-

tion by means of standard granules (CSG); Damper = Percentage damage of decision system,

Optimal.rgran = Optimal granulation radius, T.acc = Total accuracy, T.cov = Total coverage, M.gran

= The mean size of classification granule in training system, M.trn = Mean training table size

M.gran
· 100%

M.trn

[%]

Optimal.rgran T.acc T.cov M.gran
Damper

[%]

nil 0.6 0.860327 0.975362 26.7913 3.89

1 0.6 0.855312 0.96145 23.905 3.47

2 0.6 0.850606 0.935074 20.5066 2.98

3 0.6 0.85161 0.92174 17.607 2.56

4 0.533333 0.84138 0.990436 52.3532 7.6

5 0.533333 0.844274 0.984638 46.987 6.82

6 0.533333 0.837318 0.98348 43.0766 6.25

7 0.533333 0.83784 0.975942 39.0534 5.67

8 0.533333 0.835582 0.973044 35.5524 5.16

9 0.533333 0.833924 0.97565 31.2922 4.54

10 0.466667 0.834204 0.99826 81.524 11.83

Table 5

„*=*”; Leave One Out; Table of errors’ percentage for all damage;
(max – min.)

; Credit Approval
2

(UCI Repository); Classification by means of standard granules (CSG); Damper = Percentage damage

of decision system, Optimal.rgran = Optimal granulation radius, T.acc = Total accuracy, T.cov = Total

coverage, M.gran = The mean size of classification granule in training system

Optimal.rgran
Damper T.acc T.cov M.gran

[%] [%] [%] [%]

1 0.6 0.76 (+-)1.3 (+-)0.0483

2 0.6 (+-)0.54 (+-)0.94 (+-)0.0538

3 0.6 (+-)1.48 (+-)0.79 (+-)0.0961

4 0.533333 (+-)0.69 (+-)0.43 (+-)0.2614

5 0.533333 (+-)1.08 (+-)0.43 (+-)0.1962

6 0.533333 (+-)0.67 (+-)0.57 (+-)0.2711

7 0.533333 (+-)1.61 (+-)0.65 (+-)0.2097

8 0.533333 (+-)1.15 (+-)0.5 (+-)0.2908

9 0.533333 (+-)1.15 (+-)0.28 (+-)0.1079

10 0.466667 (+-)0.73 (+-)0.07 (+-)0.3075
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Additional result for Wisconsin Diagnostic Breast Cancer
data set

In Table 6 additional results obtained from classification by means of

simple granular structures, for the damage in range 1 to 7% are collected.

Table 6

„*=*”; Leave One Out; Average results for all damage; Wisconsin Diagnostic Breast Cancer (UCI

Repository); Classification by means of standard granules (CSG); Damper = Percentage damage of

decision system, Optimal.rgran = Optimal granulation radius, T.acc = Total accuracy, T.cov = Total

coverage, M.gran = The mean size of classification granule in training system, M.trn = Mean training

table size

M.gran
· 100%

M.trn

[%]

Optimal.rgran T.acc T.cov M.gran
Damper

[%]

nil 0.258065 0.870722 0.924429 33.7047 5.93

1 0.258065 0.874908 0.921616 30.8408 5.43

2 0.258065 0.875358 0.907908 28.6496 5.04

3 0.258065 0.879718 0.908964 26.168 4.61

4 0.258065 0.877342 0.902638 23.6408 4.16

5 0.258065 0.873384 0.902286 22.9652 3.9

6 0.258065 0.87183 0.902284 21.084 3.58

7 0.225806 0.855392 0.96485 46.9272 7.97

A summary for the strategy „*=*”

At the fixed optimality condition: Optimal.rgran = {rgran : for maximal

accuracy at coverage ∈ [0.9,1.0]}, within „*=*” strategy for Credit Approval

(UCI Repository) the optimality of the radius during classification is stable for

damages of 1, 2, 3%. Above three percent, beginning from 4% coverage for

radius rgran = 0.6 is becoming smaller than 0.9, hence, in spite of maximal

accuracy, our radius ceases being optimal. For damages of 4–7% accuracy is

still maximal for radius 0.6, but coverage ∈ [0.8; 0.9]. Starting from 8% to 10%,

the best accuracy is for radius 0.533333. For 10% damage at rgran = 0.6

coverage ∈ [0.7, 0.8). Finally when we are applying the strategy „*=*” during

the classification CSG, stability of the optimum is low and is kept for 1,2 and

3% damage. However, the level of accuracy is high for this damage. Classifica-

tion error resulting from randomization of damage is following. for 1–3%

damage T.acc.error ∈ [0.54%, 1.48%], T.cov.error ∈ [0.79%, 1.3%], for 4–7% damage

T.acc.error ∈ [0.88%, 1.29%], T.cov.error ∈ [0.86%, 1.52%] and finally for 8–10%

damage T.acc.error ∈ [1.21%, 1.45%], T.cov.error ∈ [0.79%, 2.17%]. Result shows that
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there is no bigger dependency between the classification error resulting from

randomization and the percentage of damage.

Preserving the radius’ optimality is dependent on the classification granule

size. The bigger the damage is, the coverage and M.gran for originally optimal

radius becomes smaller. The optimum is moving to the direction of the radius

0.533333 for which classification granules have similar size to classification

granules of the originally optimal radius. It is possible to predict that the

optimum with the increase of the damage will fall down. The additional result

for Wisconsin Diagnostic Breast Cancer (UCI Repository) see Table 6 confirm

this hypothesis.

Results for the strategy „*=don’t care”

Results for Credit Approval at percentage damage from interval
[1 to 10%] and 15, 20, 25, 30%

The results for damages from interval 1 to 10% and 15, 20, 25, 30% will be

shown in the short form only, see Table 7.

Table 7

„*=don’t care”; Leave One Out; Average results for all damage; Credit Approval (UCI Repository);

Classification by means of standard granules (CSG); Damper = Percentage damage of decision

system, Optimal.rgran = Optimal granulation radius, T.acc = Total accuracy, T.cov = Total coverage,

M.gran = The mean size of classification granule in training system, M.trn = Mean training table size

M.gran
· 100%

M.trn

[%]

Optimal.rgran T.acc T.cov M.gran
Damper

[%]

nil 0.6 0.860327 0.975362 26.7913 3.89

1 0.6 0.854102 0.977392 29.2134 4.24

2 0.6 0.843688 0.975362 30.5474 4.43

3 0.6 0.84391 0.97855 32.446 4.71

4 0.6 0.843138 0.98319 35.3892 5.14

5 0.6 0.84488 0.9829 36.4368 5.29

6 0.6 0.837492 0.988116 40.021 5.81

7 0.533333 0.836474 0.99971 109.477 15.89

8 0.6 0.834058 0.993912 45.1226 6.55

9 0.6 0.833386 0.993332 45.9836 6.67

10 0.533333 0.827828 1 121.15 17.58

15 0.6 0.822166 0.99913 67.351 9.78

20 0.6 0.807246 1 91.8064 13.3

25 0.533333 0.797104 1 234.658 34.06

30 0.666667 0.794494 1 70.849 10.28
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Additional result for Wisconsin Diagnostic Breast Cancer
data set

We include in Table 8 additional results obtained from classification by

means of simple granular structures, for the damage in range 1 to 5%.

A summary for the strategy „*=don’t care”

In considered strategy for Credit Approval (UCI Repository) stability of

optimal radius is higher than in strategy „*=*”. Optimal radius is preserved

for 1–6% damage. Granules are being extended in this strategy and at the

moment when they have too large noise inside the optimum is being lost.

Starting from 7% damage, optimal radius is instable and reaches values 0.6 or

0.533333. At this method at the increase of damage, the coverage is growing to

1 because of the classifying granules’ extension. The optimum is moving to the

direction of radius 0.666667.

It is possible to expect that the optimal radius with the increase of the

damage will move up. The additional result for Wisconsin Diagnostic Breast

Cancer (UCI Repository) see Table 8 confirm this hypothesis.

Table 8

„*=don’t care”; Leave One Out; Average results for all damage; Wisconsin Diagnostic Breast Cancer

(UCI REPOSITORY); Classification by means of standard granules (CSG); Damper = Percentage

damage of decision system, Optimal.rgran = Optimal granulation radius, T.acc = Total accuracy, T.cov

= Total coverage, M.gran = The mean size of classification granule in training system, M.trn = Mean

training table size

M.gran
· 100%

M.trn

[%]

Optimal.rgran T.acc T.cov M.gran
Damper

[%]

nil 0.258065 0.870722 0.924429 33.7047 5.93

1 0.258065 0.862936 0.956766 41.5476 7.31

2 0.290323 0.869142 0.919506 23.9922 4.22

3 0.290323 0.837724 0.9529 29.8426 5.25

4 0.322581 0.844062 0.914938 15.7237 2.77

5 0.322581 0.79595 0.939192 20.22 3.43%

Conclusions

It follows from experiments that for small damage of decision system in the

range of few percent, optimal parameters for the classifier basing on simple

granules of knowledge maintain optimality. Range of the optimality is depend-
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ent on the strategy of treating missing values during classification and the

decision system structure. For the exemplary Credit Approval (UCI Reposi-

tory) system at the damage interval from 1 to 6% and strategy of treating

missing values „*=don’t care”, the decision system still contains the same

optimal parameter. For the strategy „*=*” stability is saved only for 1 to 3%

damage, but in this case we have obtained better accuracy of classification than

in strategy „*=don’t care”. For Wisconsin Diagnostic Breast Cancer (UCI

Repository) at strategy „*=don’t care” optimal radius is saved only for 1%

damage and for the strategy „*=*” optimum is preserved for damage from

interval 1 to 6%. Generally we can say that at „*=*” strategy optimal radius

with the increase of the damage will move down and for „*=don’t care”

strategy it will move up. Finally the optimum of CSG is more stable for the

strategy „*=*”.

From the engineering point of view, obtaining an answer to the question of

how to preserve stable level of classification in the case of real software and

hardware discrete decision systems is really important, particularly if these

decision systems are susceptible to noise and to damage conditional informa-

tion. Thanks to such knowledge it is possible to design decision modules which

are damage-resistant and are automatically adaptable to new conditions. In

the future work, we will check the relation between the amount of information

and stability of optimal parameters of classification based on simple granules

of knowledge.
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