PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drukowane czujniki elektroniczne zbudowane z kompozytów polimerowych zawierających nanorurki węglowe

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Printed electronic sensors fabricated from polymer composites containing carbon nanotubes
Języki publikacji
PL
Abstrakty
PL
Przedstawiono wyniki badań nad opracowaniem rodziny kompozycji polimerowych z nanorurkami węglowymi do zastosowania w produkcji czujników technikami drukarskimi. Przebadano wpływ zawartości nanorurek węglowych w kompozycjach polimerowych na właściwości elektryczne warstw nanoszonych sitodrukiem oraz przydatność do zastosowania ich w produkcji czujników temperatury i nacisku. Kompozycje te przeznaczone są do zastosowania w produkcji układów elektroniki drukowanej na podłożach elastycznych, gdzie kluczowym aspektem jest uzyskanie wysokiej wytrzymałości na naprężenia mechaniczne oraz cykliczne naprężenia zmęczeniowe. W przypadku pomiarów temperatury w zakresie 5-273 K istotne jest również utrzymanie stabilności rezystancji przy zmiennych cyklach wzrostu i spadku temperatury. Kompozycje o zawartości od 0,1 do 1% nanorurek pozwalają na wytworzenie warstw o zakresach rezystancji 103-106 Ω, adekwatnych do zastosowania w rezystancyjnych układach pomiaru temperatury. Możliwość nadrukowania dowolnego wzoru pozwala na wytworzenie czujników nacisku dostosowanych do powierzchni, dla których ma być dokonywany pomiar, upraszczając procedurę i zwiększając dokładność.
EN
Paper presents results of experiments related to fabrication of polymer compositions filled with carbon nanotubes. This type of materials were used for production of printed electronics sensors, which is a new trend in production of electronic devices and circuits for elastic and disposable electronics. Nanotube amount in compositions was evaluated in relation to electric properties of screen printed layers. Obtained polymer-nanotube layers demonstrate favourable electrical properties and high mechanical durability, what inspired authors to use that potential in production of various types of sensors including temperature and pressure sensors. Compositions are optimized for production of printed electronics elastic structures where key aspect is to obtain highly durable layers especially resistant to mechanical fatigue. Low temperature (5-273 K) measurements demands to preserve measurement stability in cyclical temperature drops and raises. Specially developed pattern of screen printed silver paths and carbon nanotube areas was fabricated for pressure measurement through contact resistance changes. It is widely used method in application such as electronic foil keypads, potentiometers or pressure sensors. Investigated samples demonstrated over thousandfold change in measured contact resistance. This is way above resistance changes measured for other carbonic filling material such as fine grained graphite or carbon black. Compositions with 0.1-1 wt.% of carbon nanotubes allows to fabricate conductive layers with resistance range 103-106 Ω adequate for resistive temperature sensors. By special manufacturing technology and thermal processes stable and linear characteristics were obtained. By employment of carbon nanotubes as the active material, parasitic tensometric effects were eliminated. Ability to print various patterns allows to manufacture sensors adjusted to complicated shapes of objects, what makes measurements more precise. This type of sensors can meet the conditions of elastic skin temperature sensors for textronic applications.
Czasopismo
Rocznik
Strony
392--397
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Lim S.H., Wei J., Lin J., Li Q., KuaYou J., A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto nafion-solubilized carbon nanotube electrode, Biosensors and Bioelectronics, 15 May 2005, 20, 11, 2341-2346.
  • [2] Tran T.H., Kwon J.H., Lee K.S., Lee J.W., Ju B.K., pH sensor using carbon nanotubes as sensing material, First International Conference on Communications and Electronics ICCE '06, Hanoi 10-11 Oct. 2006, 490-493.
  • [3] Kwon J.H., Lee K.S., Ju B.K., Fabrication of single walledcarbon nanotubes based pH sensor using ultra-precision spray, Key Engineering Materials Vols. 326-328, 2006, 1479-1482.
  • [4] Pham A., Carbon nanotube resonator sensors for remote sensing systems, Proc. of IEEE Wireless, Communication Technology, Oct. 2003, 233-236.
  • [5] Suehiro J., Zhou G., Hara M., Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy, J. Phys. D: Appl. Phys. 2003, 36, 109-114.
  • [6] Xin L., Junhua L., Yong Z., Study of catalyst grains effect on electrode of self- sustaining discharge carbon nanotubes gas sensor array, Proceedings of the 14th International Vacuum Microelectronics Conference IVMC 2001, Davis 2001, 65-66.
  • [7] Lu G., Ocola L.E., Chen J., Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes, Adv. Mater. 2009, 21, 1-5.
  • [8] Wu D.H., Chien W.T., Chen Ch. S., Chen H.H., Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor, Sensors and Actuators A: Physical 2006, 126, 1, 117-121.
  • [9] Zhang Y., Guo H., Acoustic analysis of single-walled carbon nanotube-based vacuum sensor, Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems NEMS 2007, Bangkok 2007, 1163-1166.
  • [10] Zhao Q., Frogley M.D., Wagner H.D., Direction-sensitive strain-mapping with carbon nanotube sensors, Composites Science and Technology 2002, 62, 1, 147-150.
  • [11] Bai H.L., Li W.J., W. Chow W., Zhou Y., A carbon nanotube sensor for wall shear stress measurement, Experiments in Fluids, 48, 4, 679-691.
  • [12] Deng J., Ghosh K., Modeling carbon nanotube sensors, IEEE Sensors Journal 2007, 7, 9.
  • [13] Pumera M., Merkoci A., Alegret S., Carbon nanotube-epoxy composites for electrochemical sensing, Sensors and Actuators B 2006, 113, 617-622.
  • [14] Wei Ch., Dai L., Roy A., Benson Tolle T., Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites, J. Am. Chem. Soc. 2006, 128(5), 1412-1413.
  • [15] Pradhan B., Setyowati K., Liu H., Waldeck D.H., Jian Chen J., Carbon nanotube-polymer nanocomposite infrared sensor, Nano Lett. 2008, 8(4), 1142-1146.
  • [16] Parikh K., Cattanach K., Rao R., Suh D.S., Wu A., Manohar S.K., Flexible vapour sensors using single walled carbon nanotubes, Sensors and Actuators B 2006, 113, 55-63.
  • [17] Sun Y., Wang H. H., High-Performance, Flexible hydrogen sensors that use carbon nanotubes decorated with palladium nanoparticles, Advanced Materials 2007, 19, 19, 2818-2823.
  • [18] Wang J., Musameh M., Carbon nanotube screen-printed electrochemical sensors, Analyst 2004, 129, 1004, 1-2.
  • [19] Mäklin J., Mustonen T., Halonen N., Tóth G., Inkjet printed resistive and chemical-FET carbon nanotube gas sensors, Physica Status Solidi (b) Special Issue: Electronic Properties of Novel Materials: “Molecular nanostructures” 2008, 245, 10, 2335-2338.
  • [20] Moon S-IL., Paek K-K., Lee Y-H., Park H-K., Bias-heating recovery of MWCNT gas sensor, Materials Letters 2008, 62, 16, 2422-2425.
  • [21] Avramescu A., Andreescu S., Noguer T., Bala C., Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations, Analytical and Bioanalytical Chemistry 2009, 374, 1, 25-32.
  • [22] Wring S., Hart J., Chemically modified, screen-printed carbon electrodes, Analyst 1992, 117, 1281-1286.
  • [23] Wringa S.A., Harta J.P., Bracey L., Birch B.J., Development of screen-printed carbon electrodes, chemically modified with cobalt phthalocyanine, for electrochemical sensor applications, Analytica Chimica Acta 1990, 231, 203-212.
  • [24] Wanga J., Tiana B., Nascimento V. B., Angnes L., Performance of screen-printed carbon electrodes fabricated from different carbon inks, Electrochimica Acta, 30 July 1998, 43, 23, 3459-3465.
  • [25] Jakubowska M., Słoma M., Młożniak A., Grubowarstwowe kompozyty polimerowe zawierające nanorurki węglowe w zastosowaniach elektroniki drukowanej, Elektronika 2010, 1, 66.
  • [26] Łukasik A., Degradation in carbon-poliester film presure sensors, XXXI International Conference of IMAPS Poland Chapter, Rzeszów-Krasiczyn, 23-26 September 2007.
  • [27] Hessert M.J., Vyas M., Leach J., Hu K., Lipsitz L.A., Novak V., Foot pressure distribution during walking in young and old adults, BMC Geriatrics 2005, 5, 8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0057-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.