PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kompozyty na bazie węglika wolframu z nietoksyczną osnową Fe-Mn

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Tungsten carbides composites with a non-toxic binter Fe-Mn
Języki publikacji
PL
Abstrakty
PL
Węglik wolframu charakteryzuje się wysoką temperaturą topnienia, dużą twardością, dobrym przewodnictwem cieplnym i elektrycznym oraz stabilnością chemiczną w podwyższonych temperaturach. Duża twardość węglika oraz związana z nią wysoka odporność na zużycie ścierne predysponują go jako doskonały materiał do wytwarzania narzędzi skrawających. Niestety istotną wadą narzędzi z litego węglika wolframu jest ich duża kruchość, którą można ograniczyć poprzez zastosowanie metalicznej osnowy. Najbardziej rozpowszechnionym materiałem wykorzystywanym jako osnowa, już od 1927 roku, jest kobalt. Jednakże, zasoby naturalne kobaltu kurczą się, jednocześnie jego cena jest wysoka i ulega dużym wahaniom na rynkach międzynarodowych. Dodatkowo zarówno kobalt, jak i drugi najczęściej stosowany materiał na osnowę - nikiel są silnymi alergenami oraz mogą mieć działanie rakotwórcze. Z uwagi na fakt, że węglik wolframu jest obecnie najpowszechniej stosowanym związkiem wysokotopliwym, pilnym problemem staje się opracowanie alternatywnego materiału na osnowę w kompozytach WC. Materiałem takim mogą być stopy żelazo-mangan. Charakteryzują się one podobnymi właściwościami jak kobalt. Jednocześnie zaletami stopów Fe-Mn jest ich niższa cena oraz fakt, że nie wykazują właściwości szkodliwych dla zdrowia człowieka. W niniejszej pracy przedstawiono wyniki prób zastąpienia osnowy kobaltowej osnową na bazie stopu żelazo- mangan.
EN
Tungsten carbides is known for high melting point, high hardness, good thermal and electric conduction and chemical stability at high temperature. In order to limit brittleness which is the most important disadvantage of this material some metal is add to composites with tungsten carbides. Usually it is cobalt or sometimes it is nickel. Both of them are not good for health because many people run a risk of very strong allergic action during a contact with skin and perhaps cobalt increase a risk of lung's cancer. Additionally a price of cobalt is very high and world reserves is not enough. One of the most interesting material for binder are Fe-Mn alloys. They are not toxic or allergic, they are chip and they have similar properties to cobalt, like: melting temperature, crystal structure and phase transformation on cooling. Fe-Mn alloys have also properties of the damping capacity what could be very important in a cutting tools. In this work tungsten carbides was sintering with a Fe-Mn binder. Firstly iron and manganese powders were milled in a planetary mil. The manganese content of the binder amounted to 13.5% wt. Next WC with 6 and 20% wt. Fe-Mn binder were mixing in a turbula blender for 5 hours. WC-Fe/Mn were sintered using Pulse Plasma Sintering method. In this method the heating is effect of repeated high-current discharges generated by discharging a 300 µF capacitor. Samples were sintered at 1150°C by 1, 5 and 10 min in a vacuum of 5•10-2 Pa under a load of 60 MPa. The density of sintered samples are increasing with increasing the sintering time from 90% TD after 1 min to 94% TD after 10 min sintering. Hardness of the specimens are very high for the composites with 6% binder and it averages 2800 HV10 after 5 and 10 min, after 1 min it is a little bit lower (2570 HV10). Hardness of the composites with 20% binder are not depend on sintering time and it average about 1800 HV10. SEM study shows that the average grain size of tungsten carbides is about 500 nm what confirm that PPS method is useful to consolidation sub-micron materials. SEM study shows also that the composites with 20% have another microstructure close to edge and in the center. In the center we observed big particles of iron and smaller particles of manganese but close to the specimens edge we observed only manganese particles. Thickness of this layer increase from 0.6 mm after 1 min sintering to about 1 mm after 10 min. It is probably effect of higher temperature in this area during the sintering.
Czasopismo
Rocznik
Strony
368--373
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
  • Wojskowa Akademia Techniczna, Wydział Nowych Technologii i Chemii, ul. gen. S. Kaliskiego 2, 00-908 Warszawa, Poland, dsiemiaszko@wat.edu.pl
Bibliografia
  • [1] International Tungsten Industry Association http://www.itia.org.uk/Default.asp?page=53
  • [2] Fischer T., Rystedt I., Cobalt allergy in hard metal workers, Contact Dermatitis 1983, 9, 115.
  • [3] Material Safety Data Sheet: http://ptcl.chem.ox.ac.uk/MSDS/CO/cobalt.html
  • [4] Moulin J.J., Wild P., Romazini S., Lasfargues G., Peltier, A., Bozec C., Deguerry P., Pellet F., Perdrix A., Lung cancer risk in hard-metal workers, American Journal of Epidemiology 1998, 148, 3.
  • [5] Krausa T., Schramelb P., Schallera K.H., Zöbeleina P., Webera A., Angerera J., Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds, Occup. Environ. Med. 2001, 58, 631.
  • [6] Bingham E., Cohrssen B., Powell Ch.H., Patty's Toxicology (5th Edition), Volumes 1-8, John Wiley & Sons 2001.
  • [7] http://monographs.iarc.fr/ENG/Meetings/vol86.php
  • [8] Nishiyama Z., Martensitictransformations, Academic Press, London 1977.
  • [9] Honeycombe R.W.K. Steels-microstructures and properties, Edward Arnold, London 1981.
  • [10] Seung-Han B., Jung-Chul K., Dong-Woon H., Tai-Hoon K., Jin-Hyun B., Young-Kook L., Fe-Mn martensitic alloys for control of noise and vibration in engineering applications, Materials Science & Engineering 2006, 438-440, 1101.
  • [11] Koch C.C., Nanostructured Materials - Processing, Properties and Potential Applications, Noyes Publications, William Andrew Publishing, Norwich, New York 2002.
  • [12] Michalski A., Siemiaszko D., Nanocrystalline cemented carbides sintered by the pulse plasma method, International Journal of Refractory Metals & Hard Materials 2007, 25, 153.
  • [13] Michalski A., Siemiaszko D., Jaroszewicz J., Rosiński M., Psoda M., Nanocrystalline cemented carbides sintered by the pulse plasma metod, Solid State Phenomena 2006, 114, 245.
  • [14] Michalski A., Rosiński M., Pulse Plasma Sintering technique: Fundamentals and Applications, Inżynieria Materiałowa 2010, 1, 713.
  • [15] Anstis G.R., Critical evaluation of indentation techniques for measuring fracture toughness, Journal of the American Ceramic Society 1981, 64, 533.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0057-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.