PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanokompozyty polimerowe do zastosowań medycznych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Polymer-base nanocomposite for medical application
Języki publikacji
PL
Abstrakty
PL
Praca obejmuje badania nad biozgodnymi polimerami modyfikowanymi nanocząstkami ceramicznymi. Przedmiotem badań były nanokompozyty polimerowe, wytworzone z trzech różnych polimerów: polimeru biostabilnego (polisulfon - PSU), polimeru resorbowalnego (poli(L/DL)laktyd - PL(L/DL)A) oraz polimeru pochodzenia naturalnego (chitozan - CS). Jako modyfikatory zastosowano nanometryczne cząstki ceramiczne: montmorylonit (MMT), krzemionkę (SiO2) oraz nanorurki węglowe (CNT). Materiały nanokompozytowe zostały scharakteryzowane pod względem parametrów biologicznych i mechanicznych. Wyniki badań wskazują, że modyfikacja wszystkich trzech grup polimerów, przy zastosowaniu nanocząstek ceramicznych, to skuteczna droga do otrzymywania biozgodnych, bioaktywnych tworzyw, posiadających dodatkowo znacznie lepsze parametry mechaniczne w porównaniu z czystymi polimerami.
EN
Nanotechnology generally bases on modification of materials' behaviour. One of the first real products of nanotechnology is polymer nanocomposites, which are a combination of polymer matrix and nanoparticles (so called nanofillers) that have at least one dimension in a nanometric range. The nanofillers such as nanopowders, nanofibers, or nanotubes modify the polymer matrix on a molecular level. Properties of such materials depend both, on the matrix, and the nanoparticles. These materials may exhibit enhanced mechanical (tensile strength, stiffness, toughness), gas barrier, thermal expansion, thermal conductivity, ablation resistance, optical properties, chemical properties, electronic and magnetic properties. Polymer nanocomposites is a promising class of hybrid materials derived from both synthetic and natural polymers and inorganic/organic nanoparticles. The introduction of nanoparticles into a polymer matrix ensures significant improvement of the material's properties. Polymer nanocomposites are of immense interest of such biomedical technologies as; tissue engineering, bone replacement, dental applications and controlled drug delivery. Current opportunities for application of polymer nanocomposites in biomedical applications arise from their tailored bioactivity, biodegrabilty, and mechanical properties. Interaction between nanofillers and a polymer matrix enables them to act as molecular bridges in the polymer structure. High adhesion of nanoparticles to the polymer matrix results in the enhanced strength and Young's modulus of the nanocomposites comparing to conventional composites. The paper presents results of our investigations on three kinds of nanocomposites basing on biocompatible polymer matrices and nanoparticles such as; MMT, SiO2 and CNTs which constitute temporary replacing materials in a missing bone tissue. Such material should be biocompatible, osteoinductive, osteoconductive and porous as well as mechanically compatible with the bone tissue. The results of biological investigations provided evidence of good adhesion, proliferation and morphology of osteoblastic cells on the surface of each polymer nanocomposites. The ability of the polymer nanocomposite to cell attachment, spreading and growth in in vitro conditions, combined with the good mechanical properties suggest potential use of these material as biomedical devices, particularly in the area of regenerative medicine. Values of Young's modulus increase in all nanocomposites, and their tensile strength depends on dispersion of the nanoparticles in the polymer matrix, and in most cases decrease because of agglomeration of the nanoparticles. Polymer nanocomposite containing bioactive nanoprticles shows osteoinductive properties. Treatment of the nanocomposite samples in the simulated body fluid (SBF) induced some changes on the surface of the material containing bioactive ceramic nanoparticles. The results of the tests with SBF show that the material is able to produce apatite structure on its surface.
Czasopismo
Rocznik
Strony
322--327
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, Katedra Biomateriałów, al. Mickiewicza 30, 30-059 Kraków, Poland, stodolak@agh.edu.pl
Bibliografia
  • [1] Vert M., Aliphatic polyesters: great degradable polymers that cannot do everything, Biomacromolecules 2005, 6, 538-546.
  • [2] Sakiyama-Elbert S.E., Hubbell J.A., Functional biomaterials: design of novel biomaterials, Annual Review of Materials Research 2001, 31, 183-201.
  • [3] Lakshmi S., Cato T., Biodegradable polymers as biomaterials, Progress of Polymer Science 2007, 32, 762-798.
  • [4] Ramakrishna S., Mayer J., Wintermantel E., Leong K.W., Biomedical applications of polymer-composite materials: a review, Composites Science and Technology 2001, 61(36), 1189-1224.
  • [5] Stodolak E., Blazewicz M., Rajzer I., Grausova L., Composite with carbon fibres - biological and mechanical study, Karbo 2007, 4, 187-191.
  • [6] Wang M., Deb S., Bonfield W., Chemically coupled hydroxyapatite-polyethylene composites: processing and characterization, Materials Letters 2000, 44, 119-24.
  • [7] Bordes P., Pollet E., Avérous L., Nano-biocomposites: Biodegradable polyester/nanoclay systems, Progress in Polymer Science 2009, 34(2), 125-155.
  • [8] Ryan D., Nanocomposites, Polymer News 2003, 8, 123-126.
  • [9] Promise of compounds containing nanoclays becoming reality? Modern Plastics, McGraw-Hil 2004, 324-326.
  • [10] Fischer H., Materials Science and Engineering 2003, 23.
  • [11] Myung C.C., Junzo T., FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde, Biomaterials 2002, 23, 4811-4818.
  • [12] Chul Changa M., Koa C.C., Douglas W.H., Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde, Biomaterials 2003, 24, 3087-3094.
  • [13] Zurek-Tatara M., Dyploma Thesis, AGH, Kraków 2007.
  • [14] Stodolak E., Paluszkiewicz C., Bogun M., Blazewicz M., Nanocomposite fibres for medical applications, J. Mol. Struct. 2009, 24-926, 208-213.
  • [15] Stodolak E., Gadomska K., Lacz A., Bogun M., Polymerceramic nanocomposites for applications in bone surgery, Journal of Physics 2009, 146, 012026.
  • [16] Stodolak E., Zych L., Paluszkiewicz C., Lacz A., Gadomska K., Bioactive nanosilica-based materials for applications in regenerative medicine, Acta Biomaterialia (w druku).
  • [17] Fraczek A., Dyploma Thesis, AGH, Kraków 2005.
  • [18] Bacakova L., Grausova L., Vacik J., Frączek A., Błażewicz S., Kromka A., Vanece J., Svorcik V., Improved adhesion and growth of human osteoblast-like MG 63 cells on biomaterials modified with carbon nanoparticles, Diamond & Related Materials 2007, 16, 2133-2140.
  • [19] Kostarek M., Dyploma Thesis, AGH, Kraków 2006.
  • [20] Paluszkiewicz C., Stodolak E., Błażewicz M., Preparation and spectroscopic characterisation of montmorylonitechitosane nanocomposite materials, Xth International Conference on Molecular Spectroscopy: from molecules to molecular materials and biological systems, 2009, 95.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0057-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.