PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of different aluminium alloys on the material properties of CF/Al-MMC manufactured by GPI method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ różnych stopów aluminium na własności materiałowe CF/Al-MMC wykonanych za pomocą metody GPI
Języki publikacji
EN
Abstrakty
EN
Carbon fibre (CF) reinforced aluminium (Al) composites show a high potential for lightweight design of structural components subjected to thermo-mechanical loadings. The relatively high stiffness and strength of the metal matrix allow the introduction of extremely high forces, thereby enabling a much better exploitation of the existing lightweight construction potential of this material in comparison to other composite materials. The manufacture of CF/Al-composites by the help of an advanced differential gas pressure infiltration (GPI) technique was developed at ILK, TU Dresden. Specimens made of carbon fibre reinforced aluminium metal matrix composites (CF/Al-MMC) were manufactured by GPI technology using moulds of graphite, nickel coated carbon fibres and different types of aluminium matrices. Examinations such as tensile tests, microscopic analysis and inspections of fracture surfaces provide a relation between mechanical properties of the manufactured CF/Al-MMC and the formation of their microstructure during the gas pressure infiltration process subjected to the type of aluminium matrix.
PL
Kompozyty wykonane z aluminium (Al) wzmocnionego włóknem węglowym (CF) wykazują ogromny potencjał w konstrukcjach lekkich elementów poddanych termomechanicznym obciążeniom. Stosunkowo duża sztywność i wytrzymałość osnowy metalowej umożliwia przeniesienie niezwykle dużych obciążeń, co pozwala na znacznie lepsze wykorzystanie istniejących możliwości konstrukcyjnych tego materiału w porównaniu do innych materiałów kompozytowych. Produkcja kompozytów CF/Al- za pomocą zaadaptowanej infiltracji ciśnieniowej (GPI) została opracowana w ILK, TU Dresden. Próbki aluminium wzmocnionego włóknem węglowym (CF/Al-MMC) zostały wykonane technologią GPI z użyciem form grafitowych z wykorzystaniem włókien węglowych powlekanych niklem oraz różnych rodzajów osnów aluminiowych. Przeprowadzone badania wytrzymałości na rozciąganie oraz analiza mikroskopowa powierzchni pękania pozwoliły dostarczyć informacji o zależnościach pomiędzy właściwościami mechanicznymi wytwarzanych CF/Al-MMC oraz powstałą mikrostrukturą w czasie procesu infiltracji gazowej w odniesieniu do rodzaju zastosowanej osnowy aluminiowej.
Czasopismo
Rocznik
Strony
143--148
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] Hufenbach W., Langkamp A., Andrich M., Novel fabrication technologies for carbon fibre reinforced magnesium, Kompozyty (Composites) 2003, 3, 7, 271-274.
  • [2] Training in Aluminium Application Technologies (TALAT). Version 2.0 - CD-ROM, 199, EAA, Brussels, Adamiak M., Selected properties of the aluminium alloy base composites reinforced with intermetallic particles, Journal of Achievements in Materials and Manufacturing Engineering 2006, 14(1-2), January-Fabruary.
  • [3] Palumbo G., Tricarico L., Numerical and experimental investigations on the warm deep drawing process of circular aluminium alloy specimens, Journal of Achievements in Materials and Manufacturing Engineering 2006, 14(1-2), January-Fabruary.
  • [4] Wieczorek J., Dolata-Grosz A., Dyzia M., Sleziona J., Tribological properties of aluminium matrix composites reinforcement with intermetallic phases, Journal of Achievements in Materials and Manufacturing Engineering 2006, 15(1-2), January-Fabruary.
  • [5] Kciuk M., The influence of heat treatment on the structure, mechanical properties and corrosion resistance of aluminium alloy AlMg1Si1, Journal of Achievements in Materials and Manufacturing Engineering 2006, 16, 1-2, January-February.
  • [6] Kciuk M., Structure, mechanical properties and corrosion resistance of AlMg5 alloy, Special Issue of Journal of Achievements in Materials and Manufacturing Engineering 2006, 17(1-2), July-August.
  • [7] Dobrzanski L.A., Tanski T., Cizek L., Influence of Al addition on structure of magnesium casting alloys, Journal of Achievements in Materials and Manufacturing Engineering 2006, 17(1-2), Special Issue of AMME, July-August.
  • [8] Dobrzanski L.A., Tanski T., Cízek L., Influence of Al addition on structure of magnesium casting alloys, Journal of Achievements in Materials and Manufacturing Engineering 2006, 19(2), December.
  • [9] Hufenbach W., Dobrzanski L.A., Gude M., Konieczny J., Czulak A., Optimisation of the rivet joints of the CFRP composite material and aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering 2007, 20, Special Issue of CAM3S2006, January-February.
  • [10] Szajnar J., Wrobel T., Inoculation of primary structure of pure aluminium, Journal of Achievements in Materials and Manufacturing Engineering 2007, 20, Special Issue of CAM3S2006, January-February.
  • [11] Fayza A., Zghal A., Bayraktar E., Analytic and experimental study for light alloy aluminium panels under compression, Journal of Achievements in Materials and Manufacturing Engineering 2007, 25(1), November.
  • [12] Szajnar J., Wrobel T., Methods of inoculation of pure aluminium structure, Journal of Achievements in Materials and Manufacturing Engineering 2008, 27(1), March.
  • [13] Wlodarczyk-Fligier A., Dobrzanski L.A., Kremzer M., Adamiak M., Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 2008, 27(1), March.
  • [14] Dyzia M., Dolata-Grosz A., Śleziona J., Influence of modification on structure, fluidity and strength of 226D aluminium alloy, Archives of Foundry Engineering 2008, 8, 3, 13-16.
  • [15] Dyzia M. et al, Infiltration test of carbon fibres textile by modiefied AlSi9Cu(Fe) alloy, Kompozyty (Composites) 2009, 9, 3, 210-213.
  • [16] Dyzia M., Dolata-Grosz A., Śleziona J., Fabrication and structure of Al-carbon fibres composites obtained by infiltration, Inżynieria Materiałowa 2009, in press.
  • [17] Dyzia M., Dolata-Grosz A., Śleziona J., Technological aspects of Al-carbon fibres composites fabrication-selection of matrix material, Inżynieria Materiałowa 2009, in press.
  • [18] Trimet Aluminium AG: Product-Information trimal-37 (11/2008).
  • [19] Patankar S.N., Suryanarayana C., Blackketter D., Froes F.H., Thermally induced residual stresses in carbon fibre-reinforced aluminium-matrix composites, Journal of Materials Science Letters 1992, 11, 947-949.
  • [20] Kaczmar J.W., Pietrzak K., Wołościński W., The production and application of metal matrix composite materials, Journal of Materials Processing Technology 2000, 106, 58-67.
  • [21] Kumar S Santhosh, Bai V., Seshu, Rajasekharan T., Aluminium matrix composites by pressureless infiltration: the metallurgical and physical properties, Journal of Physics 2008, D: Applied Physics 41.
  • [22] Kainer K.U., Alloying Effects on the Properties of Alumina-Magnesium - Composites, [in:] Metal Matrix Composites - Processing Microstructure and Properties, eds. N. Hansen et al, Risø National Laboratory, Roskilde 1991, 429-434.
  • [23] Tressler R.F., Interfaces in Oxide Reinforced Metals, [in:] Interfaces in Metal Matrix Composites, ed. A.G. Metcalfe, Academic Press, New York 1974, 285.
  • [24] Ebert L.J., Wright P.K., Mechanical Aspects of the Interface, [in:] Interfaces in Metal Matrix Composites, ed. A.G. Metcalfe, Academic Press, New York 1974, 31.
  • [25] Chawla K.K., Composite Materials, Science and Engineering, Springer-Verlag, New York 1998.
  • [26] Friend C.M., The effect of matrix properties on reinforcement in short alumina fibre-aluminum metal matrix composites, J. Mater. Sci. 1987, 22, 3005-3010.
  • [27] Humphreys F.J., Deformation and annealing mechanisms in discontinuously reinforced metal-matrix composites, Proc. 9th Risø Int. Symp. on Mechanical and Physical Behavior of Metallic and Ceramic Composites, eds. S.I. Anderson, H. Lilholt, O.B. Pederson, Risø National Laboratory.
  • [28] Humphreys F.J., Basu A., Djazeb M.R., The microstructure and strength of particulate metal-matrix composites, Proc. 12th Risø Int. Symp. on Materials Science, Metal-Matrix Composites - Processing, Microstructure and Properties, eds. N. Hansen et al, Risø National Laboratory, Roskilde 1991, 51-66, B. Bhav Singh, M. Balasubramanian, Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites, Journal of Materials Processing Technology 2009, 209, 2104-2110.
  • [29] Chen H., Alpas A.T., Wear of aluminium matrix composites reinforced with nickel coated carbon fibres, Wear 1996, 192, 186-198.
  • [30] Sobczak N., Kudyba A., Siewiorek A., Effect of oxidation and testing condition on wetting behaviour and interfaces in Al/Ni systems, International Conference Cast Composites 2009 (CC2009), Kocierz, 49-50.
  • [31] Urena A., Rams J., Escalera, M.D., Sanchez M., Effect of copper electroless coatings on the interaction between a molten Al-Si-Mg alloy and coated short carbon fibres, Composites: Part A 38 2007, 1947-1956.
  • [32] Rockenschaub H., Pabel T., Geier G., Hopfinger M., Beschleunigung der Auslagerungsvorgänge der Druckgusslegierung AlSi9Cu3(Fe) bei gleichzeitiger Erhöhung der statischen mechanischen Eigenschaften, Teil 1. Druckgusspraxis 2005, 3.
  • [33] Tillova E., Panuskova, M., Chalupova, M., Metallographische Analyse von Al-Si-Cu Gusslegierungen. Druckgusspraxis 2007, 3.
  • [34] Toho Tenax Europe GmbH, Delivery programme and characteristics for Tenax HTS filament yarn, nickel coated (7/2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0049-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.