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Summary 

These are presented statistical methods of correlation and regression 
analysis of the operation processes of complex technical systems. The collected 
statistical data from the Stena Baltica ferry operation process are analysed and 
used for determining correlation coefficients and single and multiple regression 
equations, expressing the influence of the operation process conditional sojourn 
times in particular operation states on the operation process total time. 

1. Introduction 

Many real transportation systems belong to the class of complex systems. 
First, and foremost, these systems are concerned with the large numbers of 
components and subsystems, and they are built and with their operating 
complexities. Modelling of these complicated system operations processes is 
primarily difficult because of the large number of the operation states, the 
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impossibility of their precise definition as well as the impossibility of the exact 
description of the transitions between these states. Generally, the change of the 
operation states of the system operations processes causes the changes of these 
systems reliability structures and their component reliability functions. 
Therefore, the system operation process and its operation states require proper 
definition and accurate identification of the interactions between the particular 
operation states and their influence on the entire system operation process is 
very important. 

The model of the operation processes of the complex technical systems [1] 
which distinguishes their operation states is proposed in [3]. The semi-Markov 
process [2] is used to construct a general probabilistic model of the considered 
complex industrial system operation process. To apply this model in practice, its 
unknown parameters have to be identified, namely, the vector of the 
probabilities of the system initial operation states, the matrix of the probabilities 
of transitions between the operation states, and the matrix of the distribution 
functions or equivalently, the matrix of the density functions of the conditional 
sojourn times in the particular operation states. All of which needs to be 
estimated on the basis of the statistical data. The methods of the evaluation of 
these unknown parameters are developed and presented in details in [4, 5]. In 
addition to these methods, the simple data mining techniques, such as 
correlation coefficient, linear and multiple regression as well as root mean 
square error can be used on the statistical data samples to perform the analyses. 
The results of that analysis as well as relevant conclusions that can be reached 
from the studies may give practically important information in the operation 
processes of the complex technical systems investigation.  

The aim of this paper is to use these techniques in studying the patterns that 
can be derived from the realisations of the conditional sojourn times, obtained 
from the Stena Baltica ferry operation process for the winter data [6, 7].  

The paper is organised in the following way. In Section 1, the problem that 
is considered in this report is defined. In Section 2, the general assumptions on 
the complex system operation process are presented. In Section 3, the Stena 
Baltica ferry operation process is described. In Section 4, the formulae from the 
winter data for the total conditional sojourn time and its mean and standard 
deviation are presented and analysed. This is then followed by the correlation 
coefficient, linear and multiple regression and root mean square error for 
analysing the winter data. In Section 5, the paper is concluded. 

2. System operation process 

We assume, similarly as in [1] and [3], that a system during its operation at 
the fixed moment t, t ∈ <0, >∞+ , may be in one of v, ,Nv ∈  different 
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operations states ,bz  b = 1,2, ..., v. Next, we mark by Z(t), t ∈ <0, ∞+ >, the 

system operation process, that is a function of a continuous variable t, taking 

discrete values in the set Z = { vzzz ,...,, 21 } of the operation states. We 

assume a semi-Markov model [1], [2], [3] of the system operation process Z(t) 
and we mark by blθ , its random conditional sojourn times at the operation states 

bz , when its next operation state is ,lz  ,,...,2,1, vlb =  .lb ≠  

Under these assumptions, the operation process may be described by the 
vector νx1)]0([ bp  of probabilities of the system operation process staying in 

particular operation states at the initial moment t = 0, the matrix ννx)]([ tpbl  of 

the probabilities of the system operation process transitions between the 
operation states and the matrix ννx)]([ tH bl  of the distribution functions of the 

conditional sojourn times blθ  of the system operation process at the operation 

states or equivalently by the matrix ννx)]([ thbl  of the density functions of the 

conditional sojourn times blθ , ,,...,2,1, vlb = ,lb ≠  of the system operation 

process at the operation states. 
To estimate the unknown parameters of the system operations process, the 

first phase in the experiment is to collect necessary statistical data. After 
collecting the statistical data, it is possible to estimate the unknown parameters 
of the system operation process [4], [5]. It is also possible to analyse rather 
accurately the system operation process sojourn times in the particular operation 
states and their influence on the entire system operation process total sojourn 
time [7]. 

3. Stena Baltica ferry operation process 

The problem considered in this paper is based on real maritime statistical 
data, obtained from Stena Baltica ferry operation process, whereby the ferry 
performs continuous journeys from Gdynia in Poland to Karlskrona in Sweden. 
Table 1 shows the operation states that the Stena Baltica ferry undertakes, 
beginning with loading at Gdynia then passing through the Traffic Separation 
Scheme to Karlskrona for unloading/loading and back to Gdynia for 
unloading/loading. This operation process is repeated continuously, and it is 
assumed that one voyage from Gdynia to Karlskrona and back to Gdynia is a 
single realisation of its operation process. For the voyage described, time-series 
data were collected for the realisation of the conditional sojourn times, blθ  of 

the system operations process at the operation state, bz  when the next transition 
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is to the operation state, lz  for winter conditions. These data are shown in the 

Appendix in Tables A5-A8 in [6]. 
 

Table 1. Stena Baltica ferry operation states 
 

Operation 
state 

Description 
Operation 

State 
Description 

1z  Gdynia: Loading 10z  Karlskrona: Unmooring 

2z  Gdynia: Unmooring 11z  Karlskrona: Turning 

3z  
Gdynia: Navigating to GD 
buoy 12z  

Karlskrona: Navigating to 
Angoring buoy 

4z  Gdynia: Navigating to TSS 13z  Karlskrona: Navigating to TSS 

5z  
Gdynia: Navigating to 
Angoring buoy 14z  

Karlskrona: Navigating to GD 
buoy 

6z  
Karlskrona: Navigating to 
Verko berth 15z  

Karlskrona: Navigating to 
Turning Area 

7z  Karlskrona: Mooring 16z  Gdynia: Ferry Turning 

8z  Karlskrona: Unloading 17z  Gdynia: Mooring 

9z  Karlskrona: Loading 18z  Gdynia: Unloading 

 
It is also important to note that the operation process is very regular and 

cyclic, in the sense that the operation states changes from the particular state, 
,bz  where 17....2,1=b  to the neighbouring state, ,1+bz  where 17....2,1=b  

only and from 18z  to 1z . Therefore, based on this definition the winter 

realisation of the conditional sojourn times, k
bb 1+θ , where 17....2,1=b  and 

k
118θ  for ,,...,2,1 blnk =  where ,40=bln  are given in Tables A5-A8. Also 

included in Tables A5-A8 are the values of the total conditional sojourn time for 

each realisation, k
Tθ , for ,,...,2,1 blnk =  where 40=bln . In our analyses, the 

values of k
Tθ  are important in analysing the behaviour of the Stena Baltic ferry 

operation process. 

4. Data analysis on Stena Baltica operation process 

In this section, the use of several data mining techniques, on the total 
conditional sojourn time are described. The techniques adopted are, namely, 
correlation coefficient, single and multiple regression and root mean square 
error. These techniques are applied on the winter data from the Stena Baltica 
ferry operation process. 
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4.1. Total conditional sojourn times 

As discussed above, the Stena Baltica ferry data is shown in the Appendix 
of [6] in Tables A5-A8 for summer. In analysing the behaviour of the data 
patterns, this paper examines the total conditional sojourn time (the length of 

time of one ferry voyage) Tθ  by analysing its successive realisations k
Tθ , 

defined as 
 

   k

b

k
bb

k
T 118

17

1
1 θθθ +∑=

=
+     (1) 

 
for ,,...,2,1 blnk =  where 40=bln  for winter data. Using equation (1), the total 

conditional sojourn times were then calculated. These values will form the basis 
of our conjecture in this paper. 

 

 
Fig. 1. Plot of realisations k

Tθ  of total conditional sojourn time Tθ for winter data 

 
 

Figure 1 shows the plot of the realisations k
Tθ  of the total conditional 

sojourn time Tθ  against the realisation number k  for winter data. In the picture, 

by STD, there are marked 1-sigma lower TT σθ −  and upper TT σθ +  bounds 

for the total conditional sojourn time Tθ . From the figure, it can be seen that 
although the ferry operation process is regular and cyclic, i.e. the operation 

states follow the process in Table 1, it can be observed that the values of Tθ  are 

1300

1350

1400

1450

1500

1550

1600

1650

1700

0 5 10 15 20 25 30 35 40

Number of realizations

T
ot

al
 C

on
di

tio
na

l S
oj

ou
rn

 T
im

es

Total Conditional
Sojourn time
Mean

STD



 PROBLEMY  EKSPLOATACJI 4-2009 
 

140

not constant. Furthermore, by using the mean total conditional sojourn time Tθ , 
evaluated from the following equation 

 

   ∑=
=

bln

k

k
T

bl
T n 1

1 θθ             (2) 

 
and the standard deviation defined as 
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it was found that nearly 16% of the k
Tθ  values fall outside of the interval 

,TT σθ −< >+ TT σθ .  
The results in Figures 1 seem to indicate a pattern, whereby in each 

realisation the contribution of the conditional sojourn time k
lbθ  for some 

operation states towards k
Tθ  is more for some than that for others. Thus, 

identifying the conditional sojourn time for such operation states, which has a 
major effect on the total ferry operation process times, would enable the total 
conditional sojourn time for the operation process to be studied, analysed, and 
predicted. These are discussed in the following sections where the use of data 

mining techniques, to understand the behaviour of k
Tθ , are presented. 

4.2. Correlation  

Correlation analysis is a method commonly used to establish, with a certain 
degree of probability, whether a linear relationship exists between two measured 
quantities. This means that, when there is correlation, it implies that there is a 
tendency for the values of the two quantities to effect one another. Vice-versa 
also holds true, if there is no correlation, which implies no effect on each other. 
Furthermore, using the values of the correlation coefficient, a positive or 
negative relationship can also be identified. If the coefficient values are close to 
1, it implies a positive linear relationship, whilst values close to 0 imply no 
linear relationship. Thus, based on the values of the correlation coefficient, the 
relationship between two measured quantities can be determined. The adopted 
formula for evaluating the correlation coefficient blr  between the conditional 

sojourn time blθ  and the total conditional sojourn time Tθ  is given by 
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for ,17,...,2,1=b 1+= bl  and ,18=b  where 40=bln  is the number of 

realisations, k
blθ  is the k-th realization of the conditional sojourn time blθ , k

Tθ  is 

the k-th realisation of the total conditional sojourn time Tθ  evaluated from (1), 

Tθ  is the mean total conditional sojourn time evaluated from the equation (2) 

and blθ  is the mean conditional sojourn time obtained from 
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Thus, using the values from Tables A5-A8, the correlation coefficient, blr , 

were then evaluated using equation (4). Table 2 shows the values of lbr  for the 

winter data. 

 
Table 2. Correlation coefficient lbr  values for winter data 
 

Operation 
State 

Correlation 
coefficient 

Operation 
state 

Correlation 
coefficient 

1z  0.155212 10z  0.129131 

2z  
-0.03004 11z  

0.205063 

3z  0.317888 12z  0.279811 

4z  0.294948 13z  0.524968 

5z  0.656862 14z  0.253331 

6z  0.319895 15z  -0.01054 

7z  0.10485 16z  -0.05677 

8z  0.166899 17z  -0.02651 

9z  
0.461141 18z  

0.406053 
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Figure 2 shows the plot of the correlation coefficient blr  against the 

number b  of the operation state bz . It can be seen that 54θ , 65θ  and 1413θ  has 

the strongest positive linear relationship, as compared to the conditional sojourn 
times in the remaining operation states, where 65θ  and 1413θ  coincides with the 

longest parts of the voyage. This implies that any variations in the conditional 

sojourn times 1+bbθ
 
associated with these 3 operation states, namely ,4z  5z  and 

,13z  will significantly effect the total conditional sojourn time Tθ .  

The plots given in Figure 2 also shows that most of the blr  values are more 
than 0, which seems to indicate a positive linear relationship, albeit a weak 
linear relationship for some. Thus, from the correlation coefficient values, it can 
be deduced that the values of the total conditional sojourn time Tθ  are strongly 

dependent on the conditional sojourn times lbθ
 
for some operation states. In the 

following section, this understanding of the data behaviour will be used in the 
regression model to predict the values of the total conditional sojourn time Tθ . 

 
 

 
Fig. 2. Plot of correlation coefficient rbl between conditional sojourn time and total conditional 

sojourn time for winter data 
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model parameters. These parameters are then estimated so as to give a "best fit" 
of the data, which are then used to predict future data behaviour. Multiple 
regression is another type of a single regression model. It is similar to a single 
regression, but in this model the interest is on examining more than one 
predictor variable. In this technique, the aim is to determine whether the 
inclusion of additional predictor variables leads to an increased prediction of the 
outcome. Here, the use of both single and multiple regression models on the 
winter data are described.  

From the above discussions, it can be seen that the aim of using the single 
regression technique is to use initial sample data of the conditional sojourn 

times bθ
 
to predict the subsequent behaviour of the total conditional sojourn 

time Tθ . In this report, the equation adopted is given by 
 

blbbbT εθβαθ ++=         (6) 

 
for ,17,...,2,1=b  1+= bl  and ,18=b  ,1=l  where bα , bβ  are the unknown 

regression coefficients and bε  is the random noise. 

 
Before predicting the subsequent behaviour, the values of bα  and bβ , 

based on varying realisations of the operation process, need to be evaluated. The 
unknown regression coefficients bα  and bβ  are evaluated by minimising the 

functions 
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for ,17,...,2,1=b 1+= bl  and ,18=b  defined as the measure of divergences 

between the empirical values k
Tθ  and defined by (6) the predicted values 

k
lbbb

k
blT θβαθθ +=)(  of the total conditional sojourn time Tθ . 

 
From the necessary condition, i.e. after finding the first partial derivatives 

of ),( bb βα∆  with respect to bα  and bβ  and putting them equal to zero, we get 

the system of equalities involving the realisations k
Tθ  of the total conditional 

sojourn time Tθ  and the realisations k
blθ  of the conditional sojourn times lbθ  

defined as follows 
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for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and .,...,2,1 blnN =   

 
The remaining question that needs to be addressed is how many realisations 

marked by N  does it take to obtain a reasonable representation of bα  and bβ . 

By using Matlab and putting the values from Tables A5-A8 [6] into the system 
of equations (8), the varying bα  and bβ  values were calculated for 

blnN ,...,2,1= . 

Figure 3 shows the plot of the regression coefficient bβ  against N , for the 

operation states of 5z  and 13z . From the discussions in Section 4.2, these 2 
operation states represent the longest part of the voyage and has major influence 
on the total conditional sojourn time. From the plot, it can be observed that 
other than the initial instability for low values of N , the values of bβ  seems to 

stabilise for larger N . In our analyses, it was discovered that the value of bβ  

stabilises at 30=N . Although not shown in this paper, this behaviour also 
holds true for all the other operation states. 

 

 
Fig. 3. Plot of regression coefficient 

bβ  for winter data 
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Thus, based on the above observations, the predicted total conditional 

sojourn times, ∗
Tθ , can then be evaluated using bβ  values at 30=N . In 

evaluating Tθ , the formulation in the system of equations (8), leading to 
 

               lbbbT θβαθ ∗∗∗ +=         (9) 

 

for ,17,...,2,1=b 1+= bl  and ,18=b  1=l , where ∗
bα  and ∗

bβ  are, 

respectively, the value of bα  and bβ  at 30=N . 

  

 
 

Fig. 4. Plots of empirical realisations and predicted from single regression values of total 
conditional sojourn time for winter data 

 
 
Figure 4 shows the comparison plots of the values of the empirical 

realisations k
Tθ  of the total conditional sojourn time Tθ  and the predicted 

values k
T*θ  of the total conditional sojourn time ∗

Tθ  defined by the equation (9) 

against the number of realisations k  for winter data. It can be observed that for 

both the operation states of 5z  and 13z , the predicted k
T*θ  values are not close to 

the empirical k
Tθ  values. Similar patterns of behaviour were also observed when 

the values of k
T*θ  for other operation states, were considered. These results seem 

to indicate that linear regression does not provide an accurate means of 
predicting the behaviour of the Stena Baltica ferry process. 
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Since the single regression does not provide an accurate prediction of the 
total conditional sojourn time, the multiple regression technique will be 
explored instead. As described earlier, the difference in the multiple regression 
technique is that in this method, more than one predictor variable is considered. 
It is envisaged that the inclusion of additional predictor variables will lead to an 
increased prediction of the total conditional sojourn time. Thus, for multiple 
regressions, the equation adopted is given by 

 

           blb

B

b
bbT εθβαθ ++= ∑
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        (10) 

 
for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and ,,...,2,1 ν=B  ,18=ν  where 

bα , ,1β  ,2β  …, Bβ  are the unknown regression coefficients and bε  is the 

random noise. 
Before predicting the subsequent behaviour of bα , ,1β  ,2β  …, Bβ  values 

based on varying realisations of the operation process need to be evaluated. The 
unknown regression coefficients bα , ,1β  ,2β  …, Bβ  is obtained by 

minimising the functions, 
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for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and ,,...,2,1 ν=B  ,18=ν  that is 

the measure of divergences between the empirical values k
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the total conditional sojourn time Tθ  and the realisations k
blθ  of the conditional  
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for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and ,,...,2,1 ν=B  18=ν  and 

.,...,2,1 blnN =   

 
The remaining question that needs to be addressed here is that how many 

realisations marked by N  in (12) does it take to obtain a reasonable 
representation of bα , ,1β  ,2β  …, Bβ . By using Matlab and putting the values 

from Tables A5-A8 [6] into the system of equations (12) for ,,...,2,1 blnN =  the 

varying bα , ,1β  ,2β  …, Bβ  values were calculated. 

In our analyses on the values of bα , ,1β  ,2β  …, Bβ , the observation is 

that the values of bα , ,1β  ,2β  …, Bβ  stabilises at 30=N . It was also 

observed that bα , ,1β  ,2β  …, Bβ  vary with respect to the number 

,B ,,...,2,1 ν=B  ,18=ν  of predictor variables considered changing 1 to 18. 
The argument for this method is that, by using more than one predictor variable, 
better results will be obtained. The aim is also to use a minimal number of 
predictor variables to generate accurate results, within a short period of time. 
Thus, based on the above observations, the predicted total conditional sojourn 
time, Tθ , can then be evaluated using bα , ,1β  ,2β  …, Bβ  values at 30=N . 

In evaluating Tθ , the formulation in the system of equations (10), leading to 
 

  lb

B

b
bBT θβαθ ∑+=

=

∗∗∗

1
    (13) 

 
for ,17,...,2,1=b 1+= bl  and ,18=b  1=l  and ,,...,2,1 ν=B  ,18=ν  where 

,∗
Bα  ,1

∗β  ,2
∗β  ...,  ∗

Bβ  are respectively the value of bα , ,1β  ,2β  …, Bβ  at 

30=N .  
 
Figure 5 shows the comparison plots of the values of the empirical 

realisations k
Tθ  of the total conditional sojourn time Tθ  and the predicted 

values k
T*θ  of the total conditional sojourn time ∗

Tθ  defined by the equation (11) 
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Fig. 5. Plots of empirical realisations and predicted from multiple regression values of total 

conditional sojourn times k
Tθ  and k

T*θ  for winter data  

 
against the number of realisations k  for winter data. It can be seen that, if only 
2 predictor variables, 21θ  and 32θ  )2( =B  are used in the equation (11), then 

the predicted values differ much from the empirical values k
T*θ  and are not 

accurate at all. It was discovered that, as we increased the number of predictor 
variables, the accuracy improves, leading to the best accuracy at 14=B  
predictor variables 21θ , 32θ , …, 1541θ . It was also observed that, if more than 

14 predictor variables were used, the results do not change much, indicating that 
14 predictor variables provide a good representation of the prediction. The 
analyses also show that multiple regression is a better method of predicting the 
behaviour of the Stena Baltica ferry data than the single regression. 

4.4.  Accuracy  

To further access the accuracy of the predicted data, the root mean square 
error ε  is applied. The root mean square error is commonly used to calculate 
the error and is often used to measure the success of numerical prediction. If the 
value of ε  is 0, it simply means that there is no error to the prediction and the 
prediction is accurate. The greater values of ε  imply that the more inaccurate is 
the prediction. In the paper, the values of the root mean square errors for both 
the single and multiple regressions are calculated. The  root mean square error 
equation adopted is given by  
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multiple regression and 40=bln  in the case of winter data. By using the 

predicted values k
T
∗θ  for both single and multiple regressions and the empirical 

value of k
Tθ  from the winter data, the values of ε  were calculated. It was found 

for winter data that, for instance, for a single regression with one predictor 
variable 65θ  that ≅ε 80.5 and for multiple regression with 14 predictor 

variables 21θ , 32θ , …, 1541θ  this value was ≅ε 5.5. These values of the root 

mean square errors validate the results obtained from the regression analyses, 
indicating the accuracy of multiple regressions as compared to single regression. 
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Conclusions 

This paper has described the use of simple data mining techniques on the 
Stena Baltica ferry operation process statistical data. The aim was to observe the 
behaviour of the ferry’s total conditional sojourn time and use it to predict 
future behaviours. In our analyses, we applied the correlation coefficient, single 
and multiple regressions, and root mean square error on the winter data. From 
the results, it can be concluded that the use of multiple regression technique on 
the data provides an accurate way of predicting the ferry’s total conditional 
sojourn time. 
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Streszczenie 

Przedstawione są statystyczne metody analizy regresji i korelacji procesów 
eksploatacji złożonych systemów technicznych. Zebrane dane statystyczne 
z procesu eksploatacji promu Stena Baltica zostały zanalizowane i użyte do 
wyznaczenia współczynnika korelacji  oraz do wyznaczenia równań jednokrot-
nej i wielokrotnej regresji, wyrażającej wpływ warunkowych czasów przebywa-
nia procesu eksploatacji w poszczególnych stanach eksploatacyjnych na całko-
wity czas procesu eksploatacji.  
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