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Summary 

Quantitative technical condition assessment may employ a scale provided by symptom baseline 

and limit values. Prognosis is then based on fitting a suitable function to recorded symptom time 

history. Such approach assumes the deterministic symptom concept. Due to the influence of 

factors other than object technical condition, however, symptom often has to be regarded as  

a random variable. With such approach it is necessary to consider the probability of limit value 

excess and hence of a false alert. This pertains to the object operation policy. An example is 

provided by vibration-based symptoms relevant to a steam turbine fluid-flow system. On the basis 

of experimental data it is shown that this probability can be unacceptably high well before the limit 

value is attained. 
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WARTO  GRANICZNA SYMPTOMU W UJ CIU STATYSTYCZNYM 

Streszczenie

Ilo ciowa ocena stanu technicznego mo e by  oparta na bazowej i granicznej warto ci

symptomu. Prognozowanie jest wówczas realizowane przez dopasowanie odpowiedniej funkcji do 

zarejestrowanego przebiegu czasowego symptomu. Zak ada to deterministyczny charakter 

symptomu. Ze wzgl du na wp yw czynników innych ni  stan techniczny symptom musi jednak 

cz sto by  traktowany jako zmienna losowa. Nale y wówczas rozwa y  prawdopodobie stwo

przekroczenia warto ci granicznej, a tym samym fa szywego alarmu. Jest to zwi zane z polityk

eksploatacji obiektu. Podany przyk ad dotyczy drganiowych symptomów stanu uk adu

przep ywowego turbiny parowej. Na podstawie danych z rzeczywistego obiektu wykazano, e

prawdopodobie stwo to mo e by  niedopuszczalnie wysokie na d ugo przed osi gni ciem 

warto ci granicznej. 

S owa kluczowe: diagnostyka techniczna, symptom diagnostyczny, warto  graniczna, prognoza. 

1. INTRODUCTION

Three principal areas of interest in condition 

monitoring are fault detection, diagnosis and 

prognosis [1]. Fault detection can be alternatively 

referred to as qualitative diagnosis, its aim being 

fault identification and localization. Similarly, 

diagnosis can be more precisely termed quantitative 

diagnosis, as it is aimed at determining damage 

extent [2]. 

Quantitative technical condition estimation of 

any object must, by necessity, involve a reference 

scale. For a given symptom S such scale may be 

provided by its baseline and limit values (S0 and Sl,

respectively). Interpretation of the baseline value is 

straightforward, as it refers to a new object with no 

malfunctions and generalized damage D equal to 

zero (D = / b, where  denotes time and b is the 

time to breakdown). Limit value is the indication of 

technical condition deterioration to a point where 

‘some action should be taken’; in other words, S = Sl

indicates an ‘accelerated wear problem’ [3]. It must 

not be confused with the maximum admissible 

value, which pertains to operational safety 

considerations and should, in principle, be 

determined by the object manufacturer. 

Symptom limit value concept may be based on 

symptom reliability [3-5]. If we employ the Ney-

man-Pearson rule, known from the statistical deci-

sion theory, we obtain 

R(Sl) = A/G   ,                        (1) 

where A is the acceptable probability of performing 

an unnecessary repair (i.e. of the object able for 

normal operation) and G is object availability. R(S)

is the symptom reliability, given by 

                                             ,           (2) 

where p(S) is the symptom probability density 

function. With sufficient database p(S) can be esti-

mated, so that, for given values of A and G, an esti-

mation of Sl can be obtained. Note that A and G are 

related to the plant operation philosophy and, in  
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a way, represent acceptable risk level. This is an 

important issue that shall be recalled later.  

Symptom probability density function is 

estimated from experimental data, so limit value 

determination inevitably involves some measure of 

uncertainty. In the following, however, we shall 

assume that the available database is large enough 

for this uncertainty to be neglected. 

Symptom limit value is particularly important for 

prognosis. Forecasting technical condition 

development usually involves some form of 

symptom time history (trend) analysis and fitting  

a curve to experimental data [1, 2]. In this manner, it 

is possible to estimate, at a given moment , the 

‘time to alert’ :

 = l – ; S( l) = Sl  ,                (3) 

so that a subsequent repair can be timed and its 

extent adjusted. This is important especially for 

large and critical machines, such as power 

generating units, aircraft engines etc. 

For any real object, especially a large and 

complex one, we have to keep in mind that  

a measured symptom value depends not only on 

object technical condition. In fact,  

S = S[X( ), R( ), Z( )] ,               (4) 

where X, R and Z denote condition parameters, 

control and interference vectors, respectively. In 

principle, influence of control parameters can be 

normalized [6], although procedures may be tedious 

and their applicability is often limited to a given 

machine type or even a particular example. In most 

cases it is reasonable to assume that R and  

Z components have no monotonic trends and can be 

treated as random variables with parameters that do 

not change with time. This implies that, for any 

symptom, its measured value is also a random 

variable and, in principle, should be dealt with in  

a statistical rather than a deterministic manner. This 

immediately brings about a question whether the 

above approach to symptom limit value excess, 

based on a deterministic symptom life curve S( ), is 

appropriate. 

2. BASIC CONSIDERATIONS 

Let us, for simplicity, assume that we are dealing 

with only one symptom and only one condition 

parameter. In such case, Eq.(4) takes the form of 

S = S[X( ), R1( ), …, Rm( ), Z1( ), …, Zn( )].  (5) 

In many important cases X can be identified with the 

above-mentioned generalized damage D, so that 

X( ) = / b. If the conditions 

,                    (6) 

                                                                (7) 

are fulfilled, we may assume that recorded symptom 

time history is dominated by technical condition 

evolution and influence of other factors may be 

neglected. This justifies a deterministic approach. If 

this is not the case, we may infer that a measured 

symptom value is, to a large extent, influenced by 

control and/or interference.  

In practice, deterministic approach is often 

acceptable if technical condition deterioration is fast, 

i.e. when we are dealing with a rapidly developing 

fault. Example is given in Fig.1a. It is easily seen 

that, in each life cycle,1 there is an almost linear 

increase (in this case caused by increasing rotor 

bow) and fluctuations are comparatively small. The 

opposite case is illustrated by another example, 

given in Fig.1b. Prior to rotor replacement, large 

fluctuations can be observed, superimposed on  

a continuous (approximately exponential) curve, 

related to ‘normal’ lifetime consumption – a natural 

damage or ‘soft fault’ [8, 9]. A deterministic 

approach in such case may prove inadequate. 

Fig. 1. Examples of vibration time histories, 

obtained for power steam turbines; a – 13CK230 

unit, rear intermediate-pressure turbine bearing, 

vertical direction, 50 Hz band; b – K-200 unit, front 

high-pressure turbine bearing, vertical direction,  

8 kHz band. See main text for details. 

                                                          
1 Life cycles are determined by repairs and 

overhauls; for more details, see e.g. [5, 7]. 
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As already mentioned, Ri and Zi components can 

usually be treated as random variables with constant 

parameters. What we in fact observe, however, is not 

these components by themselves, but rather the 

object reaction to their changes. This obviously 

leads to a question how does the object sensitivity to 

Ri and Zi, given by partial derivatives in Eqs. (6) and 

(7), change with time. This can be estimated only 

indirectly. Analysis of experimental data for power 

steam turbines shows [10] that, for vibration-based 

symptoms, standard deviation determined within  

a time ‘window’ changes rapidly as this window 

moves along the time axis. We may therefore infer 

that, with D increasing, standard deviation of  

a symptom, treated here as a random variable, will 

also increase. Thus, for a fixed Sl, probability of 

recording a symptom value S > Sl will increase as  

b, not only as a result of increasing symptom 

expected value .

There is still no model suitable to account for 

such processes in a quantitative manner. It seems, 

however, justified to perform a simulation based on 

data obtained for real objects. Results turn out to be 

of importance from the point of view of plant 

operational policy. 

3. OBJECT AND MEASUREMENT DATA

Results dealt with in the following were obtained 

with a K-200 power steam turbine, operated as  

a base-load unit in a utility power plant. This turbine 

had logged about 150,000 hours of operation before 

investigations started (this particular moment 

corresponds in the following to  = 0), which for this 

turbine type means a considerable lifetime 

consumption degree.2 After about nine years the 

high-pressure rotor was replaced during a scheduled 

overhaul (Fig.1b refers to this particular turbine).  

Data for analysis were obtained from 23% 

constant-percentage bandwidth (CPB) absolute 

vibration velocity spectra, recorded on turbine 

bearings. Amplitudes in individual frequency bands 

determined from the vibroacoustic model were 

treated as individual symptoms. More details can be 

found in references [12, 13]. It seems necessary to 

recall here that for steam turbines (and in fact for all 

rotating machines that produce broadband vibration 

spectra) two frequency ranges can be distinguished. 

The so-called harmonic or low range contains 

components generated directly as a result of the 

rotating motion, while the blade or high range 

contains those resulting from interaction between 

fluid-flow system elements and steam flow. The 

latter range, which is of particular interest for this 

                                                          
2 K-200 turbines had been designed in early 1950s, 

with a very conservative (by today’s standards) 

service life estimation of about 100,000 hours. In 

practice service life of thick-walled elements 

(casings) and rotors has been about 200,000 to 

250,000 hours; see e.g. [11]. 

study, is in this turbine approximately between 500 

and 9000 Hz. It should be noted here that vibration-

based symptoms from this range are typically much 

more sensitive to factors other that technical 

condition evolution, their typical behavior being 

similar to that shown in Fig. 1b. 

Due to comparatively long period covered by 

observation it was possible to estimate limit values 

for the above-mentioned symptoms. Details of 

relevant procedures are beyond the scope of this 

study and can be found in references [7, 14].  

In the following, two symptoms are analyzed in 

detail, namely vibration velocity amplitudes in the 

6300 Hz and 8000 Hz bands, recorded at the front 

high-pressure turbine bearing in vertical direction. 

For brevity these symptoms are hereinafter referred 

to as S1 and S2, respectively. These frequency bands 

contain components generated by the high-pressure 

rotor, which was replaced during the overhaul. Both 

these symptoms exhibited a marked increase 

tendency prior to the replacement, which indicates 

damage acceleration. For obvious reasons, data 

obtained after the overhaul have not been taken into 

account. 

4. RESULTS AND DISCUSSION

Fig.2 shows raw trends of S1 and S2 with 

exponential fitting; it has been shown, on the basis 

of experimental data analysis and some model 

considerations, that this type of S( ) function is 

appropriate for this frequency range [7]. In both 

graphs limit value is indicated (S1l = 0.349 mm/s, S2l

= 0.121 mm/s). This obviously allows for  

a prognosis: had it not been for the overhaul, 

exponential fit of the S1 would have attained its limit 

value in about 5,400 days and of S2 in about 9,500 

days, starting from  = 0. As it can be seen in Fig.2a, 

S1 actually exceeded its limit value three times 

before the overhaul. 

It seems reasonable to assume, at least as a first 

approximation, a normal distribution of S1 and S2;

we shall recall this issue later in Section 5. Within 

the framework of a statistical approach, we may as-

sume that exponential fit represents the time history 

of symptom expected value . We thus obtain: 

1( ) = 0.011  exp(0.0006 )  ,         (8) 

2( ) = 0.0077  exp(0.0003 )  ,        (9) 

where symptom value is given in mm/s and  in 

days. As already mentioned, experimental evidence 

shows that standard deviation should be expected to 

increase with . We may apply a ‘moving window’ 

procedure similar to that described in [10]: standard 

deviation  is estimated within a window that 

includes ten consecutive measurements. Such 

approach obviously implies the assumption that 

technical condition deterioration during the period 

covered by this window can be neglected. Due to the 

‘accelerated wear’ condition, we may also assume 
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Fig. 2. Time histories of the S1 (a) and S2 (b) 

symptoms; broken line represents exponential fit and 

horizontal line marks the symptom limit value. 

Intersection of these lines has not been shown in  

(b) for clarity ( l is about 9,500 days). 

the exponential fit for . Corresponding results for 

symptoms S1 and S2 are shown in Fig. 3. It is easily 

seen that fitting is far from perfect, due to large 

‘jumps’ of the symptom value that cause stepwise 

changes of . This is particularly evident for 1.

Exponential increase can nevertheless be seen. For 

relative standard deviation r ( r = / ) we obtain: 

r1( ) = 20.51  exp(0.0006 )  ,       (10) 

r2( ) = 3.50  exp(0.0009 )  ,        (11) 

where r is given in percent and  in days. 

Functions given by Eqs. (8  11) and estimated 

values of S1l and S2l allow for numerical simulations 

of limit value excess probability P = P(S > Sl) as  

a function of time for both S1 and S2. Results are 

shown in Fig. 4. It should be noted here that, in 

order to reduce the influence of randomness, 

baseline values S01 and S02 have been determined by 

averaging first five measurements rather than simply 

taking the first measured value. 

Simulation results shown in Fig. 4 show that for 

 < 2500 days and  < 3000 days for S1 and S2, res-

pectively, limit value excess probability is very low 

(P1,2 < 0.00001). At the end of the period covered by 

observation, i.e. for  3300 days, P is still quite 

low (P1 = 0.159 and P2 = 0.017 for S1 and S2,

Fig. 3. Exponential fits of r1 (a) and r2 (b) time 

histories. 

respectively). It can be easily seen, however, that for 

 = 5000 days, i.e. about 400 days before estimated

l, P1 is only slightly lower than 0.5. From the point 

of view of unit operation this means that more than  

a year before symptom limit value is attained the 

probability of a false alert is almost 0.5. For S2 initial 

values of  and  are substantially lower, but due to 

higher exponential factor the increase is faster. For 

= 5000 days, i.e. over twelve years before estimated 

l, P2 is already over 0.4. 

We may note here that S( ) fitting and Sl esti-

mation correspond to a ‘conventional’, or deter-

ministic approach to technical condition develop-

ment prognosis. Such approach involves some 

method of symptom limit value determination and 

hence, as already mentioned, implies a certain plant 

operation policy. The above considerations show, 

however, that such policy should also determine the 

acceptable level of false alert probability. Analysis 

of data pertaining to real objects clearly shows that 

this probability is certainly not negligible well 

before the symptom limit value is attained. With an 

on-line condition monitoring system, wherein 

measurements can be taken at arbitrary time 

intervals, an averaging procedure may be  

a reasonable alternative: in this way, symptom time 

history is ‘smoothed’ and the impact of its statistical 

nature is reduced. Such systems are, however, 

usually very costly and their parameters may be 

limited by the industrial plant environment 
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Fig. 4. Symptom limit value excess probability  

P(S > Sl), calculated for S1 (a) and S2 (b). 

requirements.3 On the other hand, with an off-line 

system, wherein measurements are usually perfor-

med at certain time intervals, such averaging is not 

practical and statistical nature of symptoms has to be 

accounted for. 

5. FUTURE PROSPECTS 

The example presented in Section 4 immediately 

raises at least two questions that have to be 

addressed.

The first one is related to the method of 

determining statistical parameters involved. It seems 

reasonable to assume that ( ) is adequately 

represented by fitting a curve to experimental 

results, providing that the function is properly 

selected and fitting quality satisfactory. Exponential 

fitting seems justified for objects that approach b,

due to the destructive feedback [1]. It has also been 

shown experimentally that such fitting yields good 

results for vibration-based symptoms pertaining to 

the blade frequency range [2]. Fitting a curve to the 

( ) experimental time histories is, however, more 

problematic, which is clearly seen in Fig. 3. One 

                                                          
3 On-line vibration measurement systems installed 

on steam turbines usually have the upper 

frequency limit of a few hundred Hz, due to 

sensors used. The entire blade frequency range is 

thus cut off. 

possible reason, and probably the most important 

one, is the very method of determining . Time 

window should be kept short, in order to fulfill the 

condition of negligible technical condition change. 

The shorter the window, however, the worse is the 

accuracy of estimation. This contradiction is 

particularly severe if intervals between individual 

measurements are long, and this is exactly the case 

in this particular cause. The situation would 

certainly have been much better if data from  

a purpose-designed diagnostic experiment had been 

available. Such experiment should probably be 

performed with an object characterized by much 

shorter l. This opens the field for possible future 

research.

The other question is whether normal distribution 

of S is justified. It is well known that many physical 

phenomena can be described by this type of 

distribution [14]. In this particular case this implies 

that, at a given moment , with a corresponding 

expected value ( ) and an arbitrary S, it is equally 

probable to record symptom value of S = ( ) + S

and of S = ( ) – S. In fact this does not seem to be 

the case. Figs. 1b and 2 clearly indicate that 

‘upward’ jumps are encountered more often than 

‘downward’ ones; in other words, influence of 

control and interference is likely to result in  

a measured symptom value increase rather than 

decrease. A right-hand skewed distribution would 

thus be more appropriate. Weibull distribution, with 

the probability density function given by 

(12)

(a – threshold, b – scale, c – shape factors, S a)

might be more suitable. It seems justified to assume 

a = 0, as no lower limit for the symptom value can 

be determined. Both b and c must in such case be 

estimated within a narrow time window, which 

exacerbates the above-mentioned accuracy problem 

(with the normal distribution only  is determined in 

this manner). In the author’s opinion, assumption of 

a right-hand skewed distribution is very unlikely to 

change qualitative conclusions presented in Section 

4 and render the symptom statistical nature un-

important in technical condition development prog-

nosis. In fact, P(S > Sl) curves might in such case 

even be steeper than those shown in Fig. 4. Again,  

a purpose-designed diagnostic experiment might be 

decisive.
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