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Summary 

Machines have many faults which evolve during its life (operation). Observing some number 

of symptoms during the machine operation it is possible to capture needed fault oriented 

information. One of the methods to extract fault information from such symptom observation 

matrix (SOM) is to apply the singular value decomposition (SVD), obtaining in this way the 

generalized fault symptoms. The problem of this paper is to use the total damage symptom, being 

a sum of all generalized symptoms. Also we will use the first generalized symptom as the 

dominating fault symptom, to infer better on machine condition. There was some new software 

created for this purpose, and some cases of machine condition monitoring have been considered as 

examples. Considering these it seems to the author, that both generalized symptoms should be 

used for the inference on machine condition. They are complimentary each other in some way, and 

should be used together to increase the reliability of diagnostic decision. 

Keywords: condition monitoring, multidimensional observation, singular value decomposition,  

generalized fault symptoms, grey models, forecasting, decision reliability. 

CA KOWITA I CZ STKOWA OCENA STANU W  WIELOWYMIAROWEJ  

DIAGNOSTYCE MASZYN 

Streszczenie

Maszyny maj  wiele uszkodze , które ewoluuj  w trakcie ich pracy. Je li obserwujemy pewn

liczb  dobranych symptomów w trakcie ycia obiektu mo emy t  informacj  o uszkodzeniach 

wychwyci  w zapisie symptomowej macierzy obserwacji (SOM). Ekstrakcja tej informacji 

uszkodzeniowej jest mo liwa za pomoc  procedury SVD, która wyodr bnia poszczególne 

uogólnione  symptomy zwi zane z niezale nymi uszkodzeniami w maszynie. Zazwyczaj mamy 

sytuacje jednego dominuj cego symptomu i nasze wnioskowanie diagnostyczne mo e by

zwi zane z tym dominuj cym symptomem, lub te  z tzw. uszkodzeniem ca kowitym jako suma 

wszystkich uogólnionych symptomów. Problemem pracy jest w a nie pytanie; czy wzi  pod 

uwag  jedynie dominuj ce uszkodzenie, czy te  ca kowite. Okazuje si  z kilku przyk adów, ze 

wi ksz  pewno  decyzji diagnostycznej uzyskamy je li w we miemy pod uwag  oba symptomy, 

symptom ca kowitego uszkodzenia jak i dominuj cy symptom. 

S owa kluczowe: nadzorowanie stanu, wielowymiarowa obserwacja, rozk ad SVD, uogólnione 

symptomy, szare modele, prognozowanie, pewno  decyzji. 

1. INTRODUCTION

The most machines in operation, even 

performing simple operations, have many modes of 

failure. Hence their diagnostics have to be 

multidimensional. From the other side, the 

contemporary advancement in measurement 

technology allows us to measure almost any 

component of phenomenal field, inside or outside 

of the working machine. The only condition for 

symptoms in such multidimensional diagnostics is 

some kind of proportionality to gradual worsening 

of the machine condition which takes place during 

it operation. If it is so, we can name the measured 

component of machine phenomenal field as the 

symptom
2 of condition. In this way we are 

measuring a dozen of ‘would be’ symptoms, and 

our condition monitoring is multidimensional from 

the beginning. Due to this situation, the application 

of multidimensional machine condition observation 

is now well established fact, see [1, 4, 5, 6] - for 

example. Moreover there exist some difference in 

application and processing of the multidimensional 

signals and/ or symptom observation matrix. For  

a diagnostic signals and symptoms one can apply 

also so called data fusion technique [4, 20, 21], and 

similar techniques developed lately.  

1Paper presented at ISVR09 Cracow 
2Measured physical quantity being proportional to 

the condition of the machine. 
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In case of multi symptom observation one can 

apply principal component analysis (PCA), or 

singular value decomposition (SVD), looking for 

principal or singular components, which may have 

some diagnostic meaning. For the case of SVD 

method (Singular Value Distribution), there exists 

the body of experimental evidence [2, 19], for 

example, that singular components and the 

quantities created from them can be treated as 

generalized fault symptoms having prescribed 

diagnostic meaning.  

All these transformation and symptom 

processing starts from the data base called symptom 

observation matrix (SOM) acquired during the on 

line or off line machine monitoring. Let us explain 

now how this SOM is structured and how it may be 

obtained. 

During the machine life  we can observe its 

condition by means of several symptoms Sm( )

physically different and measured at some moments 

of life n , n=0,1,… p > r, p < b, ( b – anticipated
breakdown time). This creates sequentially the 

symptom observation matrix (SOM), the only 

source of information on condition evolution of 

machine in its life time 0 <  < b. We assume 

additionally that real condition degradation is also 

multidimensional, and is described by semi 

independent faults Ft( ), t=1,..u <  r,  which are 

evolving in the machine body, as the expression of 

gradual degradation of the overall machine 

condition. This degradation proceeds from the not

faulty condition
3 up to its near breakdown state. 

Generalizing, one can say now, that we have m

dimensional symptom space for condition 

observation, and r < m dimensional fault space, 

which we try to extract from the observation space, 

by using SVD or PCA. 

 Moreover, some of ‘would be’ symptoms 

contained in SOM are redundant; it means not 

carrying enough information on the evolving faults 

during the machine life. But of course there is not 

unique criterion of the redundancy. During the 

course of our research, several measure of 

redundancy has been applied, the volume of 

observation space (Vol1), pseudo Frobenius norm 

(Frob1) of SOM [19], and others. But they seem to 

be not good enough with respect of the quality of 

the final diagnostic decision. This means 

additionally, when optimizing the observation 

space, we should take into account the adequate 

assessment of the current and the future machine 

condition. The paper considers this problem, and it 

is done on the level of previous SVD works of the 

author. As the forecasting technique with minimal 

error, the grey system model with rolling window 

[12] was adopted for diagnostic purposes, and has 

been applied here according to [19]. 

3We assume machine is new, or after the overhaul 

and repair process. 

But having the multidimensional problem of 

fault assessment, it is important now what type of 

generalized symptom we use for the forecasting and 

condition inference. Do we use the overall 

degradation symptom of the machine, or some 

specified generalized symptom proportional to one 

fault only, or both these symptoms. The results of 

such new approach to multidimensional diagnosis 

presented here were verified on the real data of 

machine vibration condition monitoring. 

Concerning the software, some modification of last 

programs for the data processing was needed as 

well. As a result is was found ,that this approach 

seems to be promising enabling a better 

understanding of machine condition, and also the 

better current and future condition assessment. 

2. EXTRACTION METHOD OF PARTIAL 

FAULTS FROM THE SOM

As it was said in the introduction, our 

information on machine condition evolution is 

contained in p  r symptom observation matrix 

(SOM), where in r columns are presented p rows of  

the successive readings of each symptom, made  at 

equidistant system lifetime moments n, t=1,2,…p.

The columns of such SOM are next centered and 

normalized to three point average of the three initial 

readings of every symptom. This is in order to 

make the SOM dimensionless, to diminish starting 

disturbances of symptoms, and to present the 

evolution range of every symptom from zero up to 

few times of the initial symptom value Son,

measured in the vicinity of lifetime 1 = 0.

After such preprocessing we will obtain the 

dimensionless symptom observation matrix (SOM)

in the form; 

    SOM  Opr  = [Snm],    Snm = 1
0m

nm

S

S
 , (1)

where bold non italic letters indicate primary 

measured dimensional symptoms.

It was said in the introduction, we apply now to 

the dimensionless SOM  (1),   the Singular Value 

Decomposition (SVD), [22], to obtain singular 

components (vectors) and singular values 

(numbers) of SOM , in the form 

Opr = Upp * pr * Vrr
T
,   (T- matrix transposition ) ,

                            

(2)

where Upp is p dimensional orthonormal matrix of 

left hand side singular vectors, Vrr is r dimensional 

orthonormal matrix of right hand side singular 

vectors, and  the diagonal matrix of singular values 

pr  is defined as below 

pr = diag ( 1, …, l ),  with nonzero s. v.: 1 > 2

>…> u >0,                                      (3)
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and zero s. v.   ; u+1 = … l = 0,   l= max (p, r),

u  min ( p, r),  u <.r < p.

In terms of machine condition monitoring the 

above (3) means, that from the r primarily 

measured symptoms (dimension of observation

space) we can extract only u  r nonzero 

independent sources of diagnostic information, 

describing the evolving generalized faults  Ft( ), 

t=1,..u, and creating in this way the less 

dimensional fault space. But only a few faults 

developing currently in a machine are making 

essential contribution to total fault information (are
enough developed). The rest of potential 

generalized faults, symbolized here by small u

value, are usually below the standard 10% level of 

noise.  What is important here, that such SVD

decomposition can be made currently, after each 

new observation (reading) of the symptom vector 

[Sm]; n = 1 … p, and in this way we can trace the 

faults evolution, and their advancement, in any 

operating mechanical system.  

3.  DIAGNOSTIC INTERPRETATION  

OF SVD 

From the current research and implementation 

of this idea [2], one can say, that the most important 

fault oriented indices obtained from SVD; is the 

generalized fault symptom SDt , t=1,2,  and also the 

sum of all generalized fault symptoms SumSDi , as 

some equivalent symptom  of total (cumulated)

machine damage. In another way, the generalized 

fault symptom SDt  can be named also as 

discriminant, or the generalized  symptom of the 

fault order t, and one can obtain this as the SOM

product and singular vector vt , or in general in 

matrix notation as below:

SD = Opr*V = U* ,

and in particular; SDt = Opr * vt = t ut,

t=1,...u < r.                              (4) 

We know from SVD theory [22], that all 

singular vectors vt , and ut , as the components of 

singular matrices, are normalized to one, so the  

energy norm of this  new discriminant (generalized 
fault symptom) gives simply the respective singular 

value t:

      Norm (SDt) SDt = t. , t = 1, ...,u.          (5)  

The above defined discriminant SDt ( ) can be 

also named as lifetime fault profile, and the 

respective singular value t( ) as a function of the 

lifetime seems to be its life advancement of damage 

(energy norm) and the same the measure of 

importance of the fault. That is the main reason 

why we use dimensional or dimensionless singular 

values for the ordering of importance of generalized 

symptoms (faults).

The similar fault inference can be postulated to 

the meaning, and the evolution of summation 

quantities, the total damage profile SumSDi( ) as

below 

SDt ( )  Ft( ), with: SDt ( ) = t  , t=1,2, 

)()(
11

FuSDSumSD
u

i

ii

u

i

ii

with: SumSDi( ) i( )             (6)

Currently it seems to be, that the condition 

inference based on the first summation damage 

measure; SumSDi, (total damage measure) may 

stand as the first approach to multidimensional 

condition inference, as it was lately shown in the 

previous papers (see for example [1, 2, 7]). The 

similar inference based on the first (dominating)

generalized fault SD1 is valuable and 

complimentary, as it was shown lately [19]. 

      SumSDi( ) = SD1( ) + ( SumSDi( )).      (6a)

Going back to SVD itself it is worthwhile to 

show some mathematical metaphor of (5), that 

every perpendicular matrix has such decomposition, 

and it may be interpreted also as the product of 

three matrices [22], namely 

Opr =  (Hanger) x ( Stretcher) x (Aligner
T).        (7) 

This is very metaphorical description of SVD

transformation, but it seems to be useful analogy 

for the inference and decision making in our case. 

The diagnostic interpretation of formulae (7) one 

can obtain very easily. Namely, using its left hand 

side part we are stretching our SOM over the life 

(observations) dimension, obtaining the matrix of 

generalized symptoms as the columns of the matrix 

SD (see below). And using its right hand side part 

of (7) we are stretching SOM over the observed 

symptoms dimension, obtaining the assessment of 

contribution of every primary measured symptoms 

in the matrix AL, assessing in this way the 

contribution of each primary symptom to the 

generalized fault symptom SDi . 

SD =Opr*Vrr = Upp* rr ;

         and AL = U
T

pp *Opr = rr *V
T

rr  . (8)

This means that SD matrix is stretched along the 

life coordinate giving us the life evolution of the 

weighted ( i) singular vectors. And AL matrix is 

aligned along the symptom dimension with the 

same way of weighting by i, giving the assessment 

of information contribution of each primary 

symptom. 

We will calculate numerically the above 

matrices and use them for the better interpretation 

of monitoring results (SD), and optimization of 

dimension of the observation space (AL).
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4. THE SOM INFORMATION MEASURE 

AND OPTIMIZATION 

Having in mind the redundancy of some 

primary symptoms, i.e. the primary observation 

space, some additional considerations should be 

made concerning SOM information assessment. In 

terms of previous findings this can be done by 

calculating the Frobenius norm (Frob) of this 

matrix, and the volume (Vol) created by  

u-dimensional generalized fault space identified by 

application of (SVD). One can calculate easily both 

information indices as the sum and the product of 

singular values in the following way: 

Frob(SOM) i
2 1/2

;

and Vol(SOM) i , i = 1,…u. 

But squaring the small singular values of i

(less than one) make them much smaller, giving 

seemingly smaller contributions to the matrix 

information asset, and to the volume of the 

observation space. Due to this we can propose to 

use not the exact Frobenius norm but its 

modification as below: 

Frob1 = i ; and:  Vol1 = i .

                                 i = 1,…u.                      (9)

This will give us possibility to look for the 

small, just evolving faults, and not omit them when 

we try to reduce the redundancy of the observation 

vector. Consequently one can get less redundancy 

of new optimized SOM, with less number of 

columns but also keeping in observation the small 

just evolving fault information ( i).

The use of Frobenius measure for a matrix has 

also mathematical validation. In general, one can 

understand this as the problem of approximation of 

matrix B, by so called k-rank approximation. 

Following the paper [9] we can make the 

quantitative assessment of such k-rank 

approximation of a matrix B as the difference 

below: 

 B -Bk F  = 
2
k+1 +…

2
u

1/2 ,           (10) 

where the subscript u stands for maximal 

dimension of nonzero singular value, i.e. the rank 

of our primary SOM.

 This means also, that instead of (9), we 

will write simplified measure of approximation of 

SOM in the form of deviation from primary SOM

rank, as below 

k Frob1  Frob1o – Frob1k = k+1 +… u .   (11) 

Using this quality index of matrix 

approximation measure we, can form additional 

objective measure of the SOM redundancy. And 

minimization of SOM rank may be carried by 

excluding some primary measured symptoms Sm

with low information contribution, which produce 

mainly small (less than one) singular vales u.

Such criteria of redundancy minimization we 

have used quite recently. But following the last 

papers [19], one may notice that after some 

symptom rejection, which gives expected increase 

in the volume of information space (Vol1). Also the 

rank approximation of SOM gives only some drop 

in Frob1 measure, but the result of prognosis is not 

enough good, giving erroneous future values,

sometimes less than the previous one. How to avoid 

such errors in forecasting?  

There seem to be one possibility more, to make 

the symptom rejection more objective and 

anticipating the goodness of the condition forecast. 

We have to consider the contribution of primary 

measured symptoms to the creation of first 

generalized symptoms SD1 , and also the creation of 

total damage generalized symptom SumSDi. The 

first overall information contribution measure, can 

be calculated separately to each primary symptom, 

from the correlation matrix of our SOM (with 
appended lifetime in the first column), as the 

centered and normalized sum of column elements. 

The second measure one can obtain if we append 

additionally to the previous matrix the vector 

SumSDi, as a first column. When   calculating 

covariance matrix from these and in the first row 

we will have needed information. After needed 

normalization to the first element of this row this 

will give us the contribution of every primary 

symptom to the total damage symptom SumSDi.

5. THE GLOBAL AND PARTIAL FAULT 

INFERENCE

We have gathered above all necessary 

analytical and inference knowledge concerning 

processing of symptom observation matrix, the 

extraction of fault information, and optimization of 

SOM rank. So, there is a right moment to validate 

these finding and proposal by some experimental 

data taken from real situations of vibration 

condition monitoring. In order to do this the last 

Matlab® program svdopt1gs.m presented in [19] 

has been modified to svdoptInt.m. The inference 

basis for the first program was the total damage 

generalized symptom SumSDi , while in the 

modified program such inference basis is the first 

generalized symptom SD1. Just to catch the the way 

of inference and the followed diagnostic decision 

difference we will take some uneasy case of heavy 

fan (3MW) working in unstable and load 

uncontrolled regime (random supply of the air to 

the mine shaft), serving as the source of fresh air for 

ventilation at the deep copper mine. The main 

troubles with this fun were unbalance and 

nonalignment between the fan and the driving 

electric motor, due to that the unit was constantly 

monitored.  

Figure 1 presents below the six pictures as the 

result of fan data processing by specially prepared 

program svdoptint.m made in the Matlab® 

environment, where the main stream of inference 

follows the evolution of the first generalized 

symptom SD1. The first top left picture, gives the 

results of 30 weeks measurements of symptom life 
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curves of vibration velocity at a five points located 

on the fan aggregate structure. One may notice here 

the great instability of symptom readings, symptom 

No 4 in particular. This is better seen at the picture 

middle left when data are centered and normalized 

to the average value of the three initial symptom 

readings. We can notice here the negative values of 

symptom as an effect of load instability and 

normalization. The picture bottom left presents the 

generalized symptoms as the result of SVD 

processing, indicating also the symptom limit value 

calculated for the generalized symptom of total 

damage SumSDi (red line) denoted there as Slc , 

and also symptom limit value Sl1 calculated from 

the first generalized symptom SD1.

The picture top right shows the relative amounts 

of information obtained as percentage of given 

singular value i normalized to the sum of all 

singular values. As it follows from (5) this indicates 

at the same time the advancement of the given fault 

evolution in the machine life. As the legend to this 

picture we have indication of two redundancy 

measure, the Frob1 and the Vol1, which will serve 

as some guidance in the optimization process of the 

observation space. 

The middle right picture presents the 

contribution of primary measured symptoms (the 

first = lifetime) to the creation of the dominating 

three generalized symptoms. One can notice here, 

that symptoms No 4 and 5 give minimal 

contribution and can be rejected in a process of 

optimization of the observation space. The last 

picture, the bottom right, of the Figure 1 shows the 

evolution of symptom limit value as calculated 

from the first generalized symptom SD1, indicating

also the value of symptom limit value as calculated 

from the sum of generalized symptoms SumSDi.

One can notice from the both bottom pictures, that 

in this case the difference between symptom limit 

values is a small one, but the value obtained from 

SD1 gives better indication of the coming machine 

breakdown.
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Fig. 1 The results of SVD processing of vibration data of a huge fan pumping air into the copper mine 

shaft, with the inference according to dominating generalized symptom SD1
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Fig. 2. The Correlation measure of overall and particular contribution of primary symptoms 

As it was mentioned before, the program 

svdoptint.m contains not only the matrix AL (8) 

(picture middle left), but also some correlation 

assessment of individual and overall information 

contribution of every primary symptom in SOM. 

Figure 2 presents these data, and we can see there, 

really symptom No4 has minimal overall 

contribution, and a negative one to generalized 

symptom SD1.

Having such strong indication of the two 

symptoms redundancy (No 4 and No 5), let us begin 

a gradual rejection of these symptoms contained in 

SOM. As a first step we rejected symptom No 4, 

however its contribution is not minimal in this case. 

The effect of such rejection is shown in a Figure 2, 

organized in the same manner as a previous one. 

Comparing the both we can notice the radical 

change in the symptom behavior, mainly we have 

rejected the most unstable primary symptom No 4. 

As the result of such rejection we have much clear 

situation of symptom evolution, primary symptom 

(picture top left) and generalized (picture bottom 

left), and the values of symptom limit values have 

change slightly, differing more than previously. 

Also the Frobenius redundancy measure drops 

significantly, and the volume of the fault space 

increased a little. But the most important effect of 

this rejection is the increased stationarity of 

remaining symptoms, the primary and generalized 

as well. Looking at the picture middle right one can 

notice very low contribution of primary symptom 

No 5. Hence next motion will be the rejection of 

this symptom together with previously rejected No 

4. The results of such double rejection operation 

and subsequent processing one can find on the 

Figure 4. 



DIAGNOSTYKA’ 4(52)/2009 

CEMPEL, The global and partial system condition assessment in multidimensional condition monitoring
29

0 10 20 30
0.5

1

1.5

2
Symp.Observ.Matrix with movavg.of A0=sier1

A
m
pl
it
.o
f
S
ym
p-
s
S

m

0 10 20 30
-0.5

0

0.5

1
Sympt.Observ.Matrix;cen&norm.init; A1=sier1

R
e
l.
A
m
pl
it
.o
f
S
ym
pt
o
m
s
S

m

Stright line = life

1 2 3 4 5
-1

0

1

2
1:3 Singul.Compon.-contrib.of primary symptoms

R
e
l.
A
m
pl
it
u
d
e
o
f
S
D

i

No of primary symptom S
i

0 10 20 30
-0.5

0

0.5

1

1.5
svdoptint: Life evolut.of SumSD

i
 & SD

1
 discr.

Lifetime obs-sR
e
l.
A
m
pl
.o
f
S
in
g.
C
o
m
p-
s

  S
l1

=0.96233

  S
lc

=1.1369

SumSD
i

SD
1

1 2 3 4 5
0

20

40

60

80

Inform.Contrib.of singular values 
i

Sing.Val.Numb.
i

R
e
l.
C
o
n
tr
ib
u
ti
o
n
o
f

i%
Frob1=3.967

Vol1=0.0082107

10 15 20 25 30
1.2

1.4

1.6

1.8

2
Life Evolut.of Symptom Limit Value S

l
; for SD

1

Number of observations used for S
l
 calculationS

ym
pt
.L
im
it
V
a
lu
e
S

l+
1

S
l1

+1=1.9623

S
lc

+1=2.1369

Reject. sympt.No 4 

Fig. 3. The vibration symptom observation matrix of the huge fan (see Fig.1) after the rejection of unstable 

symptom No 4

Looking at the difference between Figures 3 and 

4 one can notice much more clear situation on the 

right hand pictures of Fig. 4. Now we can infer on 

fan condition using both symptom limit values Slc

and Sl1, however with Sl1 diagnosis seems to be 

more reliable. The top right picture indicate that 

Frobenius measure does not change much, but the 

volume of fault space increases almost ten times. 

This may mean that for the condition inference of 

the fan we should take into consideration the 

remaining three primary symptoms No 1, 2, 3, and 

due to this we will have the relative stable and 

reliable situation for the inference. This conclusion 

is validated more by the picture middle right, where 

one can see that the contribution of all remaining 

symptoms and the life symptom to the generalized 

symptom SD1 is valuable, being almost of the same 

order.

One can notice also that the calculation of limit 

value using first generalized symptom SD1 gives us 

lower value and this can give us more safe 

assessment of lifetime moment for machine shut 

down and renewal. From the point of view of 

diagnostic decision reliability, this seems to be 

important to have two different sources of symptom 

limit vale assessment, and to confront these values 

and the associated knowledge.  
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Fig. .4. The vibration symptom observation matrix of the huge fan (see Fig.1) after the rejection of unstable and 

the redundant symptoms No 4 and No 5

6. FORECASTING OF GLOBAL SYSTEM 

DAMAGE  AND  PARTIAL FAULTS 

ADVANCEMENT

The final quality of diagnostic decision one may 

judge making the forecast of the future condition in 

terms of total damage symptom SumSDi , and the 

first generalized fault symptom SD1. It was said in 

the introduction, that the forecast will be made by 

grey system theory (GST) [13], together with the 

rolling window method using the first order grey 

model GM(1,1) [12].  

In general GST assumes that our incomplete 

and uncertain observation can be the output of some 

dynamic multi input system of high order, 

described by the grey differential or difference 

model [20]. In condition monitoring, we assume it 

is enough to take the first order system described by 

the grey differential equation, and one forcing or 

control input only. This simplest case in GST is 

denoted as GM(1,1), means the grey model of order 

1 with one input only. The output of the system is 

the series of discrete observations (our symptom
readings) denoted here as:  

                 x
(0)

={x(0)(1),x(0)(2),…x(0)(n)},              (12)

 where n  4  is the number of observation made on 

a system (machine).

We will not present GST theory here, but only 

using the final formulae for the forecasting, and the 

rolling window concept, which is implemented into 

the forecasting software.

The application of GST to the above symptom 

readings gives the possibility to forecast the future 

one step symptom value, starting from very small 

number observation, and using the formula: 

)(/)1()1(ˆ )1()0()0( kaak eeauxkx ,

                              k=2,3,..n, (13)

where u and a are parameters to be estimated by 

special least square matrix procedure using the 

observed data (12), and the hat ^  in (13) means 

future value of the forecasted quantity. 

This concept was adjusted to the purposes of 

vibration condition monitoring in one of the earlier 

paper [18, 19]. One can notice here from the bottom 

left picture of Fig. 3 and 4, that the total damage 

generalized symptom SumSDi (line with dots) is 

evolved well after rejection the primary symptom 

No 4 and 5, enabling to undertake good diagnostic 

decision on the basis of these two symptom limit 

vales (see Fig. 4 bottom left). Moreover it enables 

good forecast even without the rolling window (see
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fig. 5). But of course, as usually in case of grey 

system modeling, the rolling windows forecast 

gives the smallest error. This error can be even 

smaller if we diminish the span of window (w), as it 

is clearly seen from the picture bottom right of the 

Fig. 5. It is worthwhile also to analyze the other 

pictures of this figure. Picture top left presents 

clearly, that the rejection of symptom No 4 was a 

good idea allowing us to determine symptom limit 

value Sl1 and having this information do act 

properly to shut down the fan ahead of breakdown 

time. The top right picture present the total forecast 

of dominating damage symptom SD1 with the grey 

model GM(1,1). It seems to be good forecast with 

the small average error, but the picture bottom left 

with the rolling windows forecast, have he smaller 

error and the actual forecast adapts smoothly to the 

course of SD1, (see curve with asterisk on the 
picture bottom right).

It is seen from the Fig. 5 left top picture, that the 

course of SD1 generalized symptom is decreasing at 

the end of fan life, but the both assessed symptom 

limit values Slc and Sl1 warns in advance enough to 

undertake shut down decision, just on time. 

However, comparing the both symptom limit values 

shown on the picture top right of the last figure, and 

Fig.4, it is good to know that the global damage 

symptom limit value Slc can be used only with 

a global damage symptom SumSDi , in other case it 

can give erroneous decision. But the limit value of 

the first generalized symptom SG1 (dominating 

fault) warns us enough in time when to shut down 

the machine safely. And this is the most important 

message for using partial and global condition 

inference simultaneously in order to increase the 

reliability of diagnostic decision, as proposed in this 

paper.

To illustrate this idea more, let us consider 

another object, railroad diesel engine monitored by 

vibration measurement, each ten thousand 

kilometers of mileage. Here 12 vibration symptoms 

were initially monitored at the top of one of the 

engine cylinder. With this data using the software 

similar as previously (Fig.1-4), two primary 

symptoms have been found as redundant.  As it is 

seen from the vibration course on the next figure 6, 

at 210 thousand kilometers of the engine mileage 

some minor repair was done without overhauling 

the engine, what reduced greatly the generalized 

symptom of total engine damage SumSDi.
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Fig. 5. Grey rolling forecast of the fan condition using the first generalized symptom SD1 , together with the both 

symptom limit values and the errors of the forecasts, with and without rolling window
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Fig. 6. Vibration based total damage forecast by grey system theory for the railroad diesel engine 

The resultant forecast with the use of grey system 

model GM(1,1) has a great jump in the magnitude 

of error at the vicinity of this point, but assessed 

symptom limit vale Slo gives enough lead time to 

warn us on the impending engine failure. 

Much better situation with this respect one can 

note when the same engine data has been processed 

for the dominating generalized symptom SD1

instead of total damage symptom SumSDi , as it 

was done for the fan vibration data (Fig. 1-5). One 

can see from the figure 7 that symptom limit vale 

Sl1 calculated for the dominating generalized 

symptom SD1 gives us much better lead in warning 

before impending failure. Also the tracking error of 

the forecast (asterisk curve on picture bottom right)

is smaller than its average error. 
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Fig. 7. Dominating fault method and vibration base forecast for the same diesel engine as above (Fig. 6) 

Summing up all the results of our illustrative 

calculation for the two different objects one can say 

that the idea of calculating two symptom limit 

values simultaneously; for the global damage 

symptom SumSDi, and for the first dominating 

generalized symptom SD1 has proved its usefulness 

in increasing the reliability of diagnostic decision. 

Moreover, this integration of inference seems to be 

needed both in the main calculation in fault space 

and observation space optimization (Fig. 1-4), as 

well as in the grey system forecasting (Fig. 5, 6, 7).

7. CONCLUSIONS 

The premise to write this paper was the 

supposition that the integral inference basing on the 

first generalized dominating fault  symptom SD1

and the total damage generalized symptom SumSDi

of machine condition, can bring us valuable and 

reliable diagnostic information. As usually in 

multidimensional condition monitoring we have 

used the singular value decomposition to extract the 

fault information from the symptom observation 

matrix. After the first round of calculation it was 

possible to optimize observation space using some 

measures of fault space, such as Frob1 and Vol1

and reject some redundant symptoms. Having just 

mentioned generalized symptoms calculated, the 

symptom reliability and the symptom limit values 

Slc , Sl1 were assessed on that basis for the total 

damage symptom SumSDi, and for the dominating 

generalized symptom SD1. The last stage of 

inference was the forecast of the future value of the 

both symptoms made by grey system theory and 

GM(1,1) model. As an example we have used the 

most unstable case of condition monitoring, of the 

huge fan working in ventilation system of deep 

copper mine, and the railroad diesel engine. It was 

shown here that the optimization procedure can 

reject unstable symptom, and more over we are able 

to calculate two symptom limit values, and infer 

more effectively on the basis of such integral 

software.

It means also the global and partial inference do 

not exclude each other, both they are valuable 

expansion of our inference capability. 
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