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Summary 

The paper presents the possibility of applying selected topological tools in 
the process of the modeling, diagnosing, and monitoring of a friction pair. The 
paper includes a presentation of the parameters describing the working condi-
tions of a frictional pair in the phase space (PS), which permits the elimination 
of the time component from the data in the form of a time series, which enables 
the analysis of non-linear periodic behaviours of the phase point. The trace of 
the trajectory of the phase point presents the character of the process concerned. 
This information is unavailable in the traditional analysis preceded by a process 
of the preparation of experimental data (statistical processes). Interpretation of 
the oscillation of the system is possible by using a graphic presentation of the 
results in the phase space. Such a manner of analysing the parameters of the 
operation of a frictional pair enables the prediction of the condition of the sys-
tem in a short period of time. 
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Introduction 

The main function of modeling a physical phenomenon is the prognostic 
function. The second one, but not less important to science development, is an 
explanation of the physics of examined phenomena. Friction phenomena include 
many basic physical, chemical, and mechanical mechanisms [6], [7]. Most of 
them are not recognised as an aspect of the friction phenomena and are not pre-
sented in a formal model. An analysis of the literature of friction phenomena 
modeling points to the lack of a model that would describe this phenomenon in 
its entirety. This situation influences the basic function of the modeling and 
understanding its character, making correct interpretation of the operating con-
ditions parameters of the frictional pair difficult. Analysis of the friction process 
shows its dynamic, non-linear character. The observations of the operating con-
dition parameters of the real frictional pair show the non-regularity and unpre-
dictable behaviour of the parameters value in an assumption of long-term obser-
vation. The observed dynamic of the friction phenomena demonstrates a system 
that undergoes change in a time and can evolve. 

1. Implemented modeling method 

In order to analyse a complicated dynamic of the friction process, we have 
to use the tools that serve to analyse non-linear systems, which undoubtedly is 
the friction phenomena [8]. 

Phase space 

The dynamic systems can be graphically and numerically analysed in phase 
space (Fig. 1).  

 

 
 
Fig. 1. Classical diagram and phase portrait for logistic mapping, a=3.8 
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It is a space in which the coordinates are all values needed to unequivocally 
describe the trajectories of the examined system [1], [2]. The temporary dy-
namic state of the system is a point in a phase space, and the trajectory is a his-
tory of its movement in some period of time. Phase space permits a convenient 
description of the evolution of the dynamic system as an evolution line in a 
space of the parameter values. This manner of presenting the data allows the 
elimination of a time component from a time delay data. This space shows all 
possible states of the dynamic system. It can be two-, three- or multidimen-
sional. The possibility of showing the trajectories of the phase point in a phase 
space concerns every system regardless to its characteristic. However, it is a 
basic tool for the observation and analysis of the trajectories of the phase point. 

Lyapunov exponent 

The Lyapunov exponent is a measure of the rate at which nearby trajecto-
ries in phase space diverge. Chaotic orbits have at least one positive Lyapunov 
exponent. For periodic orbits, all Lyapunov exponents are negative. The 
Lyapunov exponent is zero near a bifurcation. In general, there are as many 
exponents as there are dynamical equations. Only the most positive exponent is 
calculated here. It is given in units of bits per data sample. Thus, a value of +1 
means that the separation of nearby orbits doubles on the average in the time 
interval between data samples [9]. 

Hurst Exponent 

The Hurst exponent can be estimated such that: 

Hq = H(q),     (1) 

for a time series 

g(t) where (t = 1,2,…),          (2) 

may be defined by the scaling properties of its structure functions Sq(τ )  
 

)(~)()( qqH

T

q
q ttS ττ gg −+            (3) 

where q > 0, τ is the time lag and averaging is over the time window T >> τ  
usually the largest time scale of the system. 

 

In such a case, the value of  X  on average moves away from its initial posi-
tion by an amount proportional to the square root of time, and we say the Hurst 
exponent is 0.5. Exponents greater than 0.5 indicate persistence (past trends 
persist into the future), whereas exponents less than 0.5 indicate antipersistence 
(past trends tend to reverse in the future). Thus, if we have data with a relatively 
flat power spectrum, we might integrate it and see if the exponent is close to 0.5, 
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which would imply that it is random and uncorrelated. For real data, the plot of 
displacement versus time seldom falls along a straight line, in which case the 
Hurst exponent depends upon the time scale [9]. 

Topological entropy 

The topological entropy of a dynamic system is a nonnegative real number 
that measures the complexity of the system. 
Given any ε > 0 and n ≥ 1, two points of  X are ε -close with respect to this met-
ric if their first r iterates are ε -close. This metric allows one to distinguish in a 
neighbourhood of an orbit the points that move away from each other during the 
iteration from the points that travel together. A subset E of X is said to be (n, ε)-
separated if each pair of distinct points of E is at least ε apart in the metric dn. 
Denote by N(n, ε) the maximum cardinality of an (n, ε)-separated set. The topo-
logical entropy of the map f is defined by 
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Topological dynamic systems of positive entropy are often considered topologi-
cally chaotic. Positive entropy always implies Li-Yorke chaos defined as the 
existence of an uncountable scrambled set. 

There exist also a possibility to predict the next value of dynamic system by 
using the maximum-entropy method. This method is good for extracting sharp, 
discrete lines from an otherwise noisy data record [2]. 

2. Experimental methods 

2.1. Materials 

All tests carried out in this research were performed for the cooperating 
brake pad-brake disc couple friction. The material of the brake pad is a standard 
one used in an automotive industry. The brake pad is a product of Lucas, series 
GDB, type 101. Brake disc were performed from gray cast iron ZL 250, with 
graphite in a form of flakes-table 2, [5], [7]. 

 
Table 1. Characteristic of friction couple 

kind of specimen  element specification supplier, type material 

brake pad 
element available on the 

market 
Lucas, GDB 101 - 

brake disc 
designer and performer 

especially for tests 
- 

ZL 250, graphite in a 
form of flakes 
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2.2. Test stand  

The investigation was performed at a stand for carrying out model examina-
tions of disc brakes. The stand was used within the scope of the European grant 
COST “Superior Friction and Wear Control in Engines and Transmissions” 
within the project “Friction processes in automotive disc brakes in the presence 
of hard abrasive particles” [3], [4]. 

 

 
 
Fig. 2.  General schema of the test stand: 1-electric motor, 2-drive wheel, 3-belt, 4-driven wheel, 

5-housing of spindle, 6-spindle, 7-brake disk, 9-calliper support, 10-calliper guidance sys-
tem, 11-feeder of hard abrasive particles [4] 

 
 
The stand was equipped with major functional systems, such as, a brake 

disc drive permitting continuous adjustment of rotational speed, a brake system 
enabling the application of any braking force, and a feeder of hard abrasive par-
ticles enabling adjustment of the time and quantity of the particles being fed. 
The stand had been equipped with systems enabling the taking measurements of 
the following parameters: rotational speed of the brake disc, braking force, 
wear, and temperature. The following were adapted for the stand: a hydraulic 
disc brake calliper, a hydraulic piston pump, a set of weights, a feeding head 
with electromagnetic drive, a driver of the type PLC SR-12MTDC equipped 
with transistor outputs, a measuring system Spider 8 with Catman 3.0 software, 
a set of sensors. 

The measuring system is a measuring set by Hottinger Baldwin Messtech-
nik Gmbh consisting of a central unit called Spider 8, with accuracy class 0.2% 
and measuring elements. The measuring elements applied are sensors by the 
HBM Company of accuracy class 0.2%. The measuring system is handled using 
the Catman 3.2 software. 
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2.3. Tests conditions 

The investigations were performed on a stand for carrying out model ex-
aminations of disc brakes according to Table 2. All tests were performed at the 
same environmental conditions: T=16°C, p=990 hPa. 

Tests no. III, IV, V consist of the following hard abrasive particles fading 
character: 

• t = 0-60 s operating without hard abrasive particles, 
• t = 60 s start delivering of  hard abrasive particles, 
• t = 60–120 s operating with hard abrasive particles. 

 
Table 2. Characteristic of tests 

no. III no. IV no. V Cooperation 
parameter\ test 

name 
no. I no. II 

part: a part: b part: a 
part: 

b 
part: a 

part: 
b 

Relative friction 
Velocity [m/s] 

1.5 1.5 3.0 3.0 3.0 

Brake pad pres-
sure [MPa] 

0.1 0.1 0.1 0.2 0.5 
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3. Results 

Figure 3, 4 presents the course of friction force fluctuation during the coop-
eration of the elements in the presence of hard abrasive particles (t = 60 s - the 
moment of dispensing the hard particles). In order to lucidly present the data 
represented in Graphs 3 and 4 in the phase space, two time intervals were se-
lected. Figure 5 presents the course of the friction force for Test no. IV. The 
first one (Fig. 5a) is for cooperation without the presence of hard abrasive parti-
cles (range t = 20 s - 40 s), the other one (Fig. 5b) is for the cooperation in the 
presence of hard abrasive particles (range t = 80 s – 100 s). Similarly, Fig. 6 
presents the course of the friction force for Test no. V. Figure 6a presents the 
course for cooperation without the presence of hard abrasive particles (range  
t = 20 s - 40 s), with the second one (Fig. 6b) for the cooperation in the presence 
of hard abrasive particles (range t = 80 s - 100 s). 
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Fig. 3.  Friction force vs. time trace for Test no. IV, t = 60 s - the initial moment of dispensing the 

hard abrasive particle 
 
 

 
 
Fig. 4.  Friction force vs. time trace for Test no. V, t=60s-the initial moment of dispensing the hard 

abrasive particle 
 
 

 
 

Fig. 5.  The curve of friction force course for subsequent orbits of the phase point for Test no. IV: 
cooperation without participation of solid particles (t=20s-40s)-a, in the presence of hard 
particles (t=80s-100s)-b 
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Fig. 6.  The curve of friction force course for subsequent orbits of the phase point for Test no. IV: 

cooperation without participation of solid particles (t=20s-40s)-a, in the presence of hard 
particles (t=80s-100s)-b 

 
 
For the presented tests (Table 2), an estimation of some exponents has been 

performed. The results are presented in Table 3. 
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Figures 5 and 6 present the course of the subsequent orbits of the phase 
point for cooperation while dispensing hard particles (Fig. b), as well as without 
dispensing (Fig. a). The trajectories obtained of the phase point present some 
non-linear oscillations. A preliminary analysis of the curves presented in the 
phase space points to a different character of the orbits for the individual forms 
of cooperation between the friction elements. This observation suggests the 
possibility of modeling the operating conditions of a frictional pair based on 
long-term graphic analysis of the operating parameters. 

4. Discussion 

For all ranges presented in Table II, estimation of the Lyapunov exponent 
has been performed. The dominant value of the Lyapunov exponent is positive 
for each test (Table 3). Moreover, within separate test, significant increase of 
the Lyapunov exponent for operating in the presence of hard abrasive particles 
has been observed. This relation can be used for the modeling and diagnostics of 
the working conditions of the friction couple. 

The increase of the standard deviation of the friction force for operating in 
the presence of hard abrasive particles, for a great majority of the cases, was 
observed. Only for Test no. IV does this value decrease, which means that pro-
posed criterion in the aspect of the hard abrasive particle detection in friction 
couple is false. 

The value of the Hurst exponent in a range between 0 and 0.5 shows that 
examined systems do not come under the probabilistic laws. For each character-
istic range in tests, the topological entropy was calculated. For an individual 
range in a certain test, the value of entropy is different, but there is no simple 
way for correlating of the entropy with the physical condition of friction couple.  

5. Conclusion 

Presentation of parameters describing the working conditions of a frictional 
pair in the phase space permits the elimination of the time component from the 
data in the form of a time series, which enables analysis of non-linear periodic 
behaviours of the phase point. The trace of the trajectory of the phase point pre-
sents the character of the process concerned. This information is unavailable in 
the traditional analysis, preceded by the process of the preparation of experi-
mental data (statistical processes). 

A positive value of the Lyapunov exponent has been obtained, which leads to 
the following observations: 
- It proves that this system is not subject to the laws of probabilistic distribu-

tion. 
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- It implements the occurrence of mathematical chaos in the system being con-
sidered. 

- It enables prediction of the condition of the system in a short period of time. 
- It enables the modeling of the friction process as a chaotic system using 

symbolic dynamics. 
Moreover, the value of the Lyapunov exponent significantly shows the 

change of the operating conditions of the friction couple (operating with and 
without participation of solid particles). 

On this level of the investigation, the topological entropy does not distin-
guish and faultless parameter for describing the friction couple because of its 
sensitivity.  

The authors draw the plans for his next investigations in this aspect. 
It is very important to say that such a examination (in a PS) can only be a 

supplement for the examination of the friction couple and cannot exist without 
the earlier classical description. 

 
Research of the authors supported by the Polish State Committee for Scien-
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Modelowanie procesu tarcia w hamulcach tarczowych pojazdów za pomocą 
przestrzeni fazowej 

Słowa kluczowe 

Modelowanie procesu tarcia, przestrzeń fazowa, wykładnik Lyapunov’a. 

Streszczenie 

Artykuł przedstawia możliwość zastosowania wybranych narzędzi topologii 
matematycznej w procesie modelowania, diagnostyki oraz monitoringu pary 
ciernej. Przedstawienie parametrów opisujących stan pracy pary trącej w prze-
strzeni fazowej prowadzi do eliminacji składowej czasowej z rozpatrywanego 
szeregu czasowego danych wejściowych, co pozwala na analizę nieliniowych, 
okresowych zachowań punktu fazowego. Droga trajektorii punktu fazowego 
przedstawia charakter procesu tarcia. Informacja ta jest niedostępna w tradycyj-
nej analizie danych, poprzedzonej wstępną obróbką danych (procesy statystycz-
ne). Interpretacja oscylacji generowanych przez system jest możliwa za pomocą 
graficznej prezentacji wyników w przestrzeni fazowej oraz parametrów opisują-
cych zachowanie trajektorii punktu fazowego. 
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