PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kompozyty Cu/diament wytwarzane metodą impulsowo-plazmowego spiekania

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Cu/diamond composites produced by pulse plasma sintering technique
Języki publikacji
PL
Abstrakty
PL
Przedmiotem pracy jest wytworzenie kompozytu Cu/diament o udziale objętościowym cząstek diamentu 50% w warunkach jego nietrwałości termodynamicznej. Do konsolidacji kompozytów stosowano metodę impulsowo-plazmowego spiekania (Pulse Plasma Sintering - PPS). Kompozyty spiekano w temperaturze 900°C w czasie od 5 do 30 min pod ciśnieniem 60 MPa. Prowadzono badania gęstości, składu fazowego i mikrostruktury wytworzonych kompozytów. Uzyskano kompozyty o gęstości względnej 98%. Nie stwierdzono obecności grafitu w spiekach. Mikrostrukturę kompozytu charakteryzuje równomierne rozłożenie cząstek diamentu w osnowie miedzi. Wprowadzenie Cr o objętości względnej 0,8 powoduje, że diament ma silne wiązanie z osnową (Cu). Zwiększenie wytrzymałości połączeń cząstek diamentu z osnową zapewnia warstwa przejściowa węglika chromu.
EN
The rapidly advancing miniaturization of micro-electronic devices leads to a considerable increase of the amount of heat evolved by electronic circuits. It is anticipated that, in the current decade, it will reach the limiting value possible to dissipate by the materials used at the present. In order to enable the packing density of micro-electronic devices to be further increased, we need new materials of higher thermal conductivity but with a comparable value of the thermal expansion coefficient. Another requirement is that these materials should have a thermal expansion coefficient comparable with that of the microelectronic substrate material so as to avoid damage to the heat sink/substrate joint due to the thermal stresses induced by cyclic temperature variation. These requirements can be satisfied by diamond/metal composites with the metal matrix of high thermal conductivity, such as e.g. Cu. The thermal properties (conductivity, thermal expansion) of the composites can easily be modified by modifying the metal/diamond proportion. However, within the temperature range of consolidation of these composites, diamond is a metastable phase and may, during the consolidation, be transformed into its stable phase i.e. graphite. This can be avoided by conducting the process under conditions of thermodynamic stability of diamond, i.e. by applying appropriately high consolidation pressure (4-5 GPa), which however increases the production costs. The authors of the present study experimented with producing copper/diamond composites with 50 vol. % of diamond particles under conditions of thermo-dynamic instability of diamond by consolidating the composite using the pulse Plasma Sintering (PPS) method. The process temperature was 900°C, the pressure was 60 MPa and the process lasted for 5 to 30 min. The phase composition, density and microstructure of the composites thus obtained were examined. The PPS-consolidated composites had a relative density of 98% and the diamond particles were distributed uniformly within the copper matrix. No graphite was found at the Cu/diamond interface (the composite consolidated at a temperature of 900°C for 30 min). Improvements in properties of the composites were achieved using copper alloy with chromium to increase the interfacial bonding in Cu/diamond composites. The Cu0.8Cr/diamond composite was characterized by a strong bond between the diamond and the copper matrix which was due to the chromium carbide transition layer formed there.
Czasopismo
Rocznik
Strony
260--264
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
autor
  • Politechnika Warszawska, Wydział Inżynierii Materiałowej, ul. Wołoska 141, 02-507 Warszawa, ninmar@inmat.pw.edu.pl
Bibliografia
  • [1] Zweben C., Advanced materials for optoelectronic packaging, Electron Packaging Prod. 42(9), 37-40.
  • [2] Ellsworth M.J., The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 2004, 2, 707.
  • [3] Marsh G., Moore’s law at the extremes, Mater. Today 2003, 6(5), 28-33.
  • [4] Fidel J.E., The properties of natural and synthetic diamond, Academic Press 1992.
  • [5] Sussmann R.S. Brandon J.R., Coe S.E., Pickles C.S.J., Sweeney C.G., Wasenczuk A., Wort C.J.H., Dodge C.N., CVD diamond: a new material for thermal, dielectric and optical applications, Ind. Diamond Rev. 1998, 58, 578-69.
  • [6] Fabis P.M., The processing technology and electronic packaging of CVD diamond: a case study for GaAs/CVD diamond plastic packages, Microelectronics Reliability 2002, 42, 233-252.
  • [7] Heat Spreaders, Technical brochure from P1 Limited, Mountain View, CA 1999, 7.
  • [8] Beffort O., Vaucher S., Khalid F.A., On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration (squeeze casting), Diamond and Related Materials 2004, 13, 1834-1843.
  • [9] Tomm J.W., Gerhardt A., Elsaesser T., Lorenzen D., Henning P., Simultaneous quantification of strain and defects in high-power diode laser devices, Appl. Pys. Lett. 2002, 81(17), 3269-71.
  • [10] Lorezen D., Hennig P., Highly thermal conductive substrates with adjustable CTE for diode laser bar packaging, Proc. SPIE 2003, 4945, 174-85.
  • [11] Sun Q., Inal O.T., Materials Science and Research 1996, B41, 261.
  • [12] Khalid F.A., Beffort O., Klotz U.E., Keller B.A., Gasser P., Microstructure and interfacial characteristics of aluminum- -diamond composite materials, Diamond and Related Materials 2004, 13, 393-400.
  • [13] Hanada K., Matsuzuki K., Sano T., Thermal properties of diamond particle-dispersed Cu composites, Journal of Materials Processing Technology 2004, 153-154, 514 -518.
  • [14] Behr W., Luy J.F., IEEE Electron Device Lett. 1990, 11, 206.
  • [15] Hall H.T., Ultra-high-pressure, high-temperature apparatus: the belt, Rev. Sic. Instrum. 1960, 31(2), 174-85.
  • [16] Katsuhito Yoshida, Hideaki Morigami, Thermal properties of diamond/copper composite material, Microelectronics Reliability 2004, 44, 303-308.
  • [17] Fedoseev D.V., Buhovest V.L., Vnukov S.P., Surfacial graphitization of diamond at high temperatures, Surface 1980, 1, 92-99 (in Russian).
  • [18] Shao W.Z., Ivanov V.V., Zhen L., Cui Y.S, Wang Y., A study on graphitization of diamond in cooper-diamond compo-site materials, Materials Letters 2003, 58, 146-149.
  • [19] Bokii G.B., Bezrukov G.N., Klyuev U.A., Natural and Synthetic Diamond, Nauka, Moscow 1986, 222 (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0045-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.