PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Rury kompozytowe o różnych strukturach wzmocnienia wytworzone metodą RTM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Composite pipes with various reinforcing structures, manufactured by RTM method
Języki publikacji
PL
Abstrakty
PL
Zaprezentowano badania wpływu struktury wzmocnienia na właściwości wytrzymałościowe rur wytworzonych metodą RTM. Rury wytworzono metodą RTM, z zasysaniem próżniowym, w dwuczęściowej formie aluminiowej z usuwalnym zbieżnym rdzeniem z PCW. Zastosowano następujące typy wzmocnienia: 1) z włókna szklanego tkaniny: jednokierunkową 350 g/m2, krzyżową 350 g/m2 oraz satynową 350 g/m2; 2) z włókna węglowego: tkaninę krzyżową 160 g/m2, rękaw o ułożeniu satynowym 215 g/m2. Jako osnowy użyto żywicy epoksydowej. Pierścienie z wytworzonych rur poddano próbom statycznego ściskania w kierunku osiowym i promieniowym. Zmierzono też udział objętościowy włókien. Przeprowadzono analizę porównawczą uzyskanych wyników. Stwierdzono, że technologia RTM umożliwia wytworzenie rur kompozytowych zadowalającej jakości. Wytworzone rury, wzmocnione zarówno włóknami szklanymi, jak i węglowymi, cechują się bardzo dobrymi właściwościami mechanicznymi. Przy podobnym ułożeniu wzmocnienia w rurze, kompozyty z włóknem węglowym wykazują istot-nie wyższy moduł sprężystości przy ściskaniu promieniowym w porównaniu z kompozytami na bazie włókna szklanego. Na korzyść włókien szklanych, jako wzmocnienia rur, przemawia bezpieczniejszy przebieg zniszczenia przy ściskaniu promieniowym. Pod względem wytrzymałości i modułu szczególnie dobrze wypada kompozyt z rury wzmocnionej tkaniną szklaną jednokierunkową. Ma on bardzo dużą wytrzymałość i korzystny przebieg zniszczenia w kierunku promieniowym, natomiast w kierunku osiowym wypada niewiele gorzej od pozostałych kompozytów. Kompozyt wzmocniony rękawem włókna węglowe-go wykazuje wyższy moduł i korzystniejszy przebieg zniszczenia przy ściskaniu promieniowym w porównaniu z kompozytem wzmocnionym tkaniną. Wypada jednak nieco gorzej pod względem wytrzymałości. Udziały objętościowe włókien w wytworzonych kompozytach nie są na zadowalającym poziomie, a mimo to uzyskane właściwości mechaniczne należy uznać za bardzo dobre. Świadczy to o dużym potencjale metody RTM w zakresie wytwarzania rur kompozytowych i konieczności oraz celowości dalszych prac nad jej modyfikacją. Powinny one objąć głównie projektowanie i wytwarzanie preform wzmocnienia oraz form pod kątem zwiększenia udziału włókien w wytwarzanych kompozytach. Praca stanowi wstępny etap badań mających na celu wdrożenie do produkcji metodą RTM wysokowytrzymałych, obustronnie gładkich rur kompozytowych.
EN
The paper presents the results of investigations on an effect of reinforcing structure on strength of composite pipes manufactured by RTM method. The pipes were manufactured by vacuum-aspiration RTM method, in 2-part aluminium mold, with removable tapered PVC core. Following reinforcement types were applied: 1) glass fibre fabrics: unidirectional of 350 g/m2, plain weave of 350 g/m2, and satin of 350 g/m2; 2) carbon fibre: plain weave fabric of 160 g/m2, satin sleeve of 215 g/m2. Epoxy resin was used as a composite matrix. Rings cut from the pipes were put to static compression tests into axial and radial directions. Fibre volume fraction was also measured. Comparative analyse of obtained results was carried out. It was found that RTM technology enable manufacturing of composite pipes of satisfactory quality. The manufactured pipes, reinforced with glass fibres and carbon fibres as well, show very good mechanical properties. The carbon fibre composites have significantly higher elastic modulus by radial compression, in comparison with glass fibre composites, by equivalent reinforcement stacking sequence in a pipe. An advantage of glass fibres, as a reinforcement in pipes, is "safer" failure progress by radial compression. Concerning strength and modulus, especially good is the unidirectional glass fabric reinforced composite. It shows very high strength and advantageous failure progress into radial direction. However, it shows only a bit lower strength into axial direction, when compared with the other composites. The carbon sleeve composite shows higher modulus and more advantageous failure progress by radial compression in comparison with the carbon fabric composite. However, it shows lower strength. Fibres volume fractions of the composites are not on satisfactory level. However, their mechanical properties should be aknowledged as very good. It testifies of grat potential of RTM method in range of manufacturing the composite pipes and it is necessary and purposeful to continue works leading to its modification. The works should incorporate mainly projecting and manufacturing of reinforcing preforms and molds, leading to an increase in fibre volume fraction of manufactured composites. The works descripted in this paper are preliminary stage of investigations aiming at an implement of the RTM method for mass production of high-strength, two-side smooth composite pipes.
Czasopismo
Rocznik
Strony
244--249
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
autor
  • Politechnika Śląska, Katedra Technologii Stopów Metali i Kompozytów, ul. Krasińskiego 8, 40-019 Katowice, Mateusz.Koziol@polsl.pl
Bibliografia
  • [1] Srivastava V.K., Kawada H., Fatigue behaviour of alumina-fibre-reinforced epoxy resin composite pipes under tensile and compressive loading conditions, Composites Science and Technology 2001, 61, 2393-2403.
  • [2] http://pipexcompositepipes.com (30.01.2009)
  • [3] www.tankinetics.com (30.01.2009)
  • [4] www.iel.wroc.pl (30.01.2009)
  • [5] Wakayama S., Kobayashi S., Imai T., Matsumoto T., Evaluation of burst strength of FW-FRP composite pipes after impact using pitch-based low-modulus carbon fiber, Composites: Part A 2006, 37, 2002-2010.
  • [6] Buarque E.N., d’Almeida J.R.M., The effect of cylindrical defects on the tensile strength of glass fiber / vinyl-ester matrix reinforced composite pipes, Composite Structures 2007, 79, 270-279.
  • [7] Śleziona J., Podstawy technologii kompozytów, Wydawnictwo Politechniki Śląskiej, Gliwice 1998.
  • [8] Vedvik N.P., Gustafson C.-G., Analysis of thick walled composite pipes with metal liner subjected to simulaneous matrix cracking and plastic flow, Composites Science and Technology 2008, 68, 2705-2716.
  • [9] Dyląg Z., Jakubowicz A., Orłoś Z., Wytrzymałość materiałów, Tom I, WNT, Warszawa 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0045-0009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.