PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical noise synthesis by sub-structuring

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noise of machinery and mechanical assemblies can be synthesised by computer using a particular jigsaw-puzzle sub-structuring approach. This approach is aimed at low noise design of industrial products where noise is generated by individual sources built in a noise-free housing. All the major noise mechanisms are dealt with in a step-by-step procedure, which can be potentially used even by less advanced industries. The novelty of this approach is that it predicts trends in the overall noise by combining data from real noise sources with a simplified modelling of the main frame (housing). The connectivity between the source(s) and the frame is ensured by well known impedance coupling rules. The simplified frame model has the advantage of being robust and easy to implement. The critical components are the noise sources which have to be characterised by measurements. The characterization techniques can be quite demanding, but reveal a lot of useful information to the designer apart from providing the input data to the synthesis algorithm. The paper outlines the basics of the approach and shows some examples of its use.
Czasopismo
Rocznik
Tom
Strony
9--15
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
Bibliografia
  • [1] Hurty W. C.: Dynamic analysis of structural systems using component modes, AIAA Journal, 3, 678-685 (1965).
  • [2] Craig Jr R. R., Bampton M. C. C.: Coupling of substructures for dynamic analysis, AAIA Journal, 6, 1313-1319 (1968).
  • [3] Berman A.: Vibration analysis of structural systems using virtual substructures, Shock and Vibration Bulletin, 43, 13-22 (1973).
  • [4] Hale A. L., Meirovitch L.: “A general substructure synthesis method for the dynamic simulation of complex structures”, Journal of Sound and Vibration, 69, 309-326 (1980).
  • [5] T. Ten Wolde: “On the validity and application of reciprocity in acoustical, mechanoacoustical and other dynamical systems”, Acustica, 28, 23-32 (1973).
  • [6] Fahy F. J.: “Vibro-acoustic reciprocity principle and applications to noise control“, Acustica, 81, 544-558 (1995).
  • [7] Cremer L.: “Synthesis of the sound field of an arbitrary rigid radiator in air with arbitrary particle velocity distribution by means of spherical sound fields”, Acustica, 55, 44-47 (1984). (in German).
  • [8] Koopmann G., Song L., Fahnline J. B.: “A method for computing acoustic fields based on the principle of wave superposition”, Journal of the Acoustical Society of America, 88, 2433-2438 (1989).
  • [9] Ochmann M.: “Multiple radiator synthesis - an effective method for calculating the radiated sound field of vibrating structures of arbitrary source configuration”, Acustica, 72, 233-246 (1990). (in German).
  • [10] Yu. I. Bobrovnitskii, T. M. Tomilina: “Calculation of radiation from finite elastic bodies by method of equivalent sources”, Soviet Physics Acoustics 36 (1990) 334-338.
  • [11] Yu. I. Bobrovnitskii, K. I. Mal’tsev, N. M. Ostapishin, S. N. Panov: “Acoustical model of a machine”, Soviet Physics Acoustics, 37, 570-574 (1991).
  • [12] G. Pavić: “An engineering technique for the computation of sound radiation by vibrating bodies using substitute sources”, Acta Acustica, 91, 1-16, (2005).
  • [13] A. T. Moorhouse, G. Seiffert: “Characterisation of an airborne sound source for use in a virtual acoustic prototype”, Journal of Sound and Vibration, 296, 334-352 (2006).
  • [14] Yu. I. Bobrovnitskii, G. Pavić: “Modelling and characterization of airborne noise sources“, Journal of Sound and Vibration, 261, 527-555 (2003).
  • [15] Yu. I. Bobrovnitskii: “A theorem on the representation of the field of forced vibrations of a composite elastic system”, Acoustical Physics 47, 409-411 (2001).
  • [16] M. Ouisse, L. Maxit, C. Cacciolati, J. L. Guyader: “Patch transfer functions as a tool to couple linear acoustics problems”, Journal of Vibration and Acoustics 127, 458-466 (2005).
  • [17] G. Pavić, N. Totaro: “Noise source characterisation using patch impedance technique”, Proceedings of Euronoise 2008.
  • [18] F. A. Firestone: “The mobility method of computing the vibration of linear mechanical and acoustical systems: mechanical-electrical analogies”, Journal of Applied Physics, 9, 373-387 (1938).
  • [19] J. O’Hara: “Mechanical impedance and mobility concepts”, Journal of the Acoustical Society of America, 41, 1180-1184 (1967).
  • [20] T. Ten Wolde, G. Gadefelt: “Development of standard measurement methods for structureborne sound emission”, Noise Control Engineering Journal 28, 5-14 (1987).
  • [21] J. M. Mondot, B. A. T. Petersson: "Characterization of structure-borne sound sources: The source descriptor and the coupling function” Journal of Sound and Vibration, 114, 507-518 (1987).
  • [22] B. A. T. Petersson, B. M. Gibbs: “Use of the source descriptor concept in studies of multipoint and multi-directional vibrational sources”, Journal of Sound and Vibration, 168, 157-176 (1993).
  • [23] S. Jianxin, A. T. Moorhouse, B. M. Gibbs: "Towards a practical characterization for structureborne sound sources based on mobility techniques", Journal of Sound and Vibration, 185, 737-741 (1995).
  • [24] M. H. A. Janssens, J. W. Verheij: “A pseudoforces methodology to be used in characterization of structure-borne sound sources”, Applied Acoustics, 61, 285-308 (2000).
  • [25] B. A. T. Petersson, B. M. Gibbs: “Towards a structure-borne sound source characterization”, Applied Acoustics, 61, 325-343 (2000).
  • [26] A. T. Moorhouse: “On the characteristic power of structure-borne sound sources”, Journal of Sound and Vibration, 248, 441-459 (2001).
  • [27] G. Pavić, A. Elliott: “Characterisation of structure-borne sound in situ”, Proceedings of Euronoise 2006 (2006).
  • [28] A. Elliot, A. T. Moorhouse, G. Pavić: “Characterization of a structureborne sound source using independent and in situ measurement,” Proceeding of International Congress on Acoustics (2007).
  • [29] M. L. Kathuriya, M. L. Munjal: “A method for the experimental evaluation of the acoustic characteristics of an engine exhaust system in the presence of mean flow”. Journal of the Acoustical Society of America, 60, 745-751, (1976).
  • [30] M. G. Prasad, M. J. Crocker: “Acoustical source characterization studies on a multicylinder engine exhaust system“, Journal of Sound and Vibration, 90, 479-490, (1983).
  • [31] D. F. Ross, M. J. Croker: “Measurement of the acoustical internal impedance of an internal combustion engine“, Journal of the Acoustical Society of America, 74, 18-27, (1983).
  • [32] H. S. Alves, A. G. Doige: “A three-load method for noise source characterization in ducts“. Proceedings of NOISE-CON 87, 329-334, (1987).
  • [33] M. G. Prasad: “A four load method for evaluation of acoustical source impedance in a duct”, Journal of Sound and Vibration, 114, 347-356 (1987).
  • [34] H. Bodén: “The multiple load method for measuring the source characteristics of timevariant sources”, Journal of Sound and Vibration, 148, 437-453 (1991).
  • [35] H. Bodén: “On multi-load methods for measuring the source data of acoustic one-port sources”, Journal of Sound and Vibration, 180, 725-743, (1995).
  • [36] L. Desmons, J. Hardy, Y. Auregan: “Determination of the acoustical source characteristics of an internal combustion engine by using several calibrated loads”, Journal of Sound and Vibration, 179, 869-878, (1995).
  • [37] P. O. A. L. Davies, K. R. Holland: I.C. engine intake and exhaust noise assessment, Journal of Sound and Vibration, 223, 425-444, (1999).
  • [38] S.-H. Jang, J.-G. Ih: “Refined multiload method for measuring acoustical source characteristics of an intake or exhaust system”, Journal of the Acoustical Society of America, 107, 3217-3225 (2000).
  • [39] R. Boonen, P. Sas: “Determination of the acoustical impedance of an internal combustion engine exhaust”, Proceedings of ISMA 2002, 5, 1939-1946, (2002).
  • [40] H. Bodén, F. Albertson: “Application of the multiple load method for non-linear sources”, Proceedings of 7th ICSV, (2000).
  • [41] S. H. Jang, J.-G. Ih: “A measurement method for the nonlinear time-variant source characteristics of intake and exhaust systems in fluid machines”. Proceedings of 10th ICSV, (2003).
  • [42] H. Rämmal, H. Bodén: “Modified multi-load method for non-linear sources”, Journal of Sound and Vibration, 299, 1094-1113, (2007).
  • [43] J. Lavrentjev, M. Åbom, H. Bodén: “A measurement method for determining the source data of acoustic two-port sources”. Journal of Sound and Vibration, 183, 517-531, (1995).
  • [44] J. Lavrentjev, M. Åbom: “Characterisation of fluid machines as acoustic multi-port sources”. Journal of Sound and Vibration, 179, 1-16, (1996).
  • [45] A. T. Moorhouse, P. O. Berglund, F. Fournier, T. Avikainen: “Fan characterization techniques“, Proceedings of Fan Noise 2003, (2003).
  • [46] L. Gavri , M. Darpas: “Sound power of hermetic compressors using vibration measurements”, Proceedings of the 2002 International Compressor Engineering Conference, 499-506 (2002).
  • [47] M. S. Kompella, B. J. Bernhard: “Variation of structural-acoustic characteristics of automotive vehicles“, Noise Control Engineering Journal, 44, 93-99 (1996).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0044-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.