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Summary 

The wide range and large scale usage of rolling bearings indicates their necessity and vital 

contribution to the performance of modern industries. In this paper, a non linear model, predicting 

mechanical behavior of the loaded angular ball bearing, have been developed. The dynamic 

behavior of a rotor supported by two angular ball bearings is analyzed. The finite element method 

is used and the rotor is decritizied on beam elements. A mathematical modal taking account 

different sources of non linearity: the Hertzian contact force and the action of all balls on the 

bearings inner races, is developed. The Newmark algorithm coupled with Newton Raphson 

iterative method is used to solve the non linear differential equation iteratively. 
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1. INTRODUCTION

Rotating contact bearings act as rotary joints 

between two or more links of a mechanism, with  

a minimum friction. In rotating machines, rotating 

contact bearings are a source of internal excitation. 

They transmit vibrations generated by gears and 

shafts to the housing. 

Stribeck R. [1] and Palmgren A. [2] have

developed an analytic model of a rolling bearing 

loaded in the radial and/or axial direction. These 

representations are based on two degrees of freedom 

model. In this model, the authors don’t take account 

of the variation of the loaded contact angle. Jones A. 

B. [3] has developed five degrees of freedom model 

(three translations and two rotations of the races), 

the 6th d.o.f. is the bearing revolution around his 

axis. He has introduced then the inertia effect 

(centrifugal force and gyroscopic moment). Simple 

formulas presented by While M. F. [4] consist on 

modeling the roller bearing by axial and radial 

stiffnesses in the ball bearing and cylindrical roller 

bearing. His study is based on a numeric radial 

model and the coupling between radial and axial 

directions is inexistent. Gupta P. K. [5] proposes an 

analytical model of the rolling bearing (ball and 

roller) dynamic behavior. He determines the 

interaction between the rolling elements. He takes 

note of the cage presence and the lubricant. This 

work shows the importance of lubrication on the 

instability of the cage movement. The study 

proposed by Wardle F. P. [6] shows the relation 

between the rolling element number and the order of 

the waviness (geometry imperfection). The author 

notes the vibration frequencies resulting from the 

non-linearity relation between displacement and 

force. These results are validated experimentally. In 

1990 years, an interesting and complete study is 

proposed by Lim T. C. and Singh R. [7]. They 

suggested an analytic approach based on the 

determination of a stiffness matrix associated to five 

degrees of freedom of the inner race (three 

translations and two rotations) in its relative 

movement with respect to the outer race. 

The proposed matrix includes the beam flexion 

and housing coupling for the two types of rolling 

bearings (ball and roller). A three-dimensional 

model is proposed by Yhland E. [8]. This model 

introduces the geometry imperfections and 

calculates the stiffness matrix. An algebraic non 

linear eruptional system joining the forces and 

moments on displacement vector and geometric 

parameters is developed by Houpert L [9]. No 

rigidity matrixes are formulated. Datta J. and 

Farhang K. [10] propose a non linear dynamic model 

in witch they introduce the masses of each bearing 

element (cage, inner and outer races and rolling 

elements). This study permits the prediction of the 

rolling bearing dynamic behavior in different 

operating conditions. 

Three degrees of freedom model is suggested by 

Akturk N.11 in which he introduces a geometric 

imperfection. Lahmar F.12 has used the formulation 

developed by Lim and Singh to resolve a non linear 

dynamic problem of an helical gear system, but any 

bearing defect formulation in this case is introduced. 

Jang G. and Jeang S. W. [13, 14] have resolved the 

dynamic equilibrium of a rotor supported by two 

angular ball bearing having five degrees of freedom. 

In next time, they introduce the centrifugal and 

gyroscopic effects. But the rotor flexibility is 

ignored. 

In our study, we propose in a first time a ball 

bearing model using the non linear contact between 

the bearing trail and the rolling elements. The model 

presented is inspired of the Lim and Singh 

development (Lim T. C. and Singh R. [7]). The 

deflection between the rolling elements and the race 

trail is determined, we can deduct then the forces 

exerted by balls on the inner race. We are interested 

in a second time, to resolve the dynamic rotor 

system equation of motion, the Newton-Raphson 
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method coupled with Newmark algorithm are used 

successively. The initial structure degrees of 

freedom is computed from a static analysis taking 

account the static effort exerted by bearings on the 

structure.

2. BALL BEARING MODELLING 

The main fundamental components of a ball 

bearing are the inner race, the cage, the outer race 

and the rolling elements. The important geometrical 

characteristics are presented in figure 1. We note the 

ball diameter Db, the pitch diameter Dm, the outer 

and inner raceway groove diameters Do and Di, the 

rolling elements number Z, and the unloaded contact 

angle 0.

Fig. 1. Ball bearing geometric characteristics 

Two co-ordinate systems, shown in Fig. 1, are 

used. The first is the overall outer race co-ordinate 

system 1, where x y, z, x , y) corresponds to the 

degrees of freedom of the inner race centre. The 

second is a local cage co-ordinate system 2, having 

the origin at an initial rolling element centre Cr. The 

outer race centre O1 is assumed to be a fixed. The 

degree of freedom z is null corresponding to the 

bearing axis rotation. A positive nominal contact 

angle 0 implies that the angular contact bearing 

should be loaded in the positive ze direction. 

An external load is applied on the inner race, 

(outer race fixed in her lodging), generates an inner 

race centre translation 
22

1 Ou  and angular 

displacement 
22

1 O in the global frame. They are 

written as: 
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An elastic deformation of the jth rolling element 

occurs. It is defined as the total interaction following 

the normal direction, we can write: 

jzjrjjj wddd 0

2*2*

0
  (2) 

where d( j) and d0 are, respectively, the loaded and 

the unloaded relative distance between the inner and 

the outer raceway groove curvature centers O1j and

O2j, and *
rj,

*
zj are the radial and axial elastic 

deformations. 

When centrifugal forces are neglected, the 

loaded contact angles between rolling element – 

inner race and rolling element – outer race are the 

same. The loaded contact angle j is given: 

*

*
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 (3) 

A negative elastic deformation indicates no 

contact between ball and the two races. For  

a positive elastic deformation, the ball races contact 

can be computed from the classical Hertz point – 

contact theory. The forces exerted by rolling 

elements on the inner race are computed: 
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3 FINITE ELEMENT DISCRETIZATION 

The study consists on analyzing structural 

vibrations generated by a rotor coupled by ball 

bearings. Bearings outer races are fixed in the rigid 

support (logging) and the inner races are fixed 

rigidly on the rotating shafts. The finite element 

method is used: shafts are discretized using beam 

finite elements with 2 nodes and 6 degrees of 

freedom per node. The beam section is constant in 

ze direction. These elements take into account the 

effects of torsion, bending and tensioncompression. 

The generalised displacement of the jth node is given 

by: 

jjjjjj

T
wvuq ,,,,,  (5) 

where
jju ,  and 

jjv ,  are respectively the beam 

bending in the 
zx ee ,  plane and in the 

zy ee ,  plane, 

wj and j are respectively the degrees of freedom 

associated with the axial and torsional deformations. 

3.1. Static Analysis 

In order to compute the initial structure 

displacements, a static study is treated. The static 

equilibrium system is written as: 
paliersN

i

paltot XFFXK
1

000
(6)

where:

totK global stiffness matrix deduced from beam 

elements matrices, 

0F  static external force, 

palN

i

pal XF
1

0
 action of balls on the inner races 

and 0X  is the system degrees of freedom. 
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Fig. 2. Static analysis steps 

To resolve the equation of motion, we have used 

the iterative Newton Raphson method, the adopted 

method for non linear problems, which resolve the 

system equilibrium (fig. 2). 

A shaft supported by two ball bearings is studied. 

The finite element method is used. An external 

radial load Fr = 6000 N is applied on the middle of 

the shaft. The shaft has a length Lpalier, an external 

diameter dext = 50 mm and internal diameter dint 

(fig. 3). 

Fig. 3. Shaft modeling 

The load distribution on the right ball bearing is 

presented in the next figures for different 

configurations.

Fig. 4. Shaft length influence (dint = 0 mm) 

For an internal diameter equal to zero and a shaft 

length Lpalier equal to 50 mm and 500 mm, figure 4 

presents the load distributions in the right bearing. 

The distance variation between the bearings lead to  

a minor variation on the load distribution: the shaft 

bending influence is traduced by a highest value of 

the maximal load which changes from 1300 to 1320 

N.

Fig. 5. Shaft diameter influence (Lpalier = 50 mm) 

Fig. 5 presents the load distribution on the right 

ball bearing for an internal shaft diameter equal to  

0 and 40 mm. No difference is observed. In fact for  

a small distance Lpalier, any bending is observed.  

When we change the shaft length Lpalier = 500 

mm, figure 6 show a large increase in the maximal 

load distribution in the right bearing from 1300 N to 

1588 N for a hallow shaft. The number of loaded 

balls increases from 5 to 8. We can interpret that the 

bearing stiffness is changed when we change the 

shaft stiffness matrix and naturally when we change 

the shaft characteristics and the deflection will be 

more important for a shaft having an internal 

diameter equal to dint = 40 mm.  

Fig. 6. Shaft diameter influence (Lpalier = 500 mm) 

The obtained results show the importance of  

a coupled model: the bearing stiffness matrix is 

functioning of the shaft geometric characteristics 

and the bearing site. 

3.2. Modal Analysis 

A modal analysis is treated; the natural 

frequencies and corresponding rotor mode shapes of 

are computed. 

For the time invariant case, the eigenvalue 

problem of the gear system is: 

iii MK 2 (7)

where i are the natural frequencies, K  is the 

modal stiffness matrix, M is the modal mass 

matrix normalized to the identity, and i the

eigenvector matrix. 

The eigenfrequencies associated to the rotor are 

recapitulated on table 1. 
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Table 1. Rotor Natural Frequencies 
Mode number Frequency (Hz)

1 19,87
2 19,87
3 54,18
4 54,18
5 575,22

3.3. Dynamic Response 

We are interested now to the system dynamic 

behaviour. The system equation of motion, taking 

account of the beam and bearings presence is 

written:

palN

i

pal

tottot

XtFF

XtKXCXM

1

0 ,

 (8) 

Where 

CM tot ,  global mass and damping matrices, 

tK tot
global stiffness matrix, 

0F  static external force, 

palN

i

pal XtF
1

,
 forces exerted by ball bearings on the 

inner race given by equation (4). 

In order to resolve equation (8), Newmark 

method coupled with the iterative Newton Raphson 

method, which resolve the system equilibrium at 

each step, are used. The system equation of motion 

is projected and resolved on a chosen modal basis, 

and then the temporal responses are therefore 

obtained by modal recombination. (figure 7) 

Fig. 7. Dynamic Analysis process 

A disk is placed on the shaft middle. The rotor 

geometric characteristics are given by table 2. The 

rotating frequency is fi = 50 Hz = 3000 tr/mn. 

Fig. 8. Rotor supported by two angular ball bearings 

Table 2. Rotor Geometric Characteristics 

Geometric characteristics Dimension 

Shaft length L 500 mm 

Shaft Diameter dext 50 mm 

Rotor Mass MD 10 Kg 

Disc thickness h 50 mm 

Rotor Mass Unbalance m 0,1 Kg 

Fig. 9. Temporal and Spectral Signature of the left 

inner race center displacement 
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Fig. 10. Left inner race center (a) and disc center (b) 

displacements spectrum for a rotor supported by 

angular ball bearings and spring bearings 

Figure 9 show the left inner race centre 

spectrum. We note the presence of the unbalance 

frequency Fbal = 50 Hz, its origin is the time 

variation of the unbalance load, and the presence of 

the cage frequency fc = 20 Hz, where the origin is 

the bearing rotation and then the variation of the 

load exerted by all rolling elements on the rotor.  

We note also a modulation of the unbalance 

frequency due to the cage frequency having a value 

Fbal ± ifc =30 Hz and 70 Hz for i = 1, Fbal ± ifc = 10 

Hz and 90 Hz for i = 2. 

Figure 10 show the left inner race centre (a) and 

rotor centre displacements (b) spectrum. We note the 

presence of unbalance frequency in the two cases 

and for the two modelizations (ball bearing and 

spring bearing). The vibratory level is more 

important for the rotor centre displacement (point of 

application of the unbalance) than the bearing 

displacement. 

4 CONCLUSION 

In this study, a rotor is studied taking account the 

ball bearing incidence. In a first time a static study is 

treated. We note the importance of a coupled model; 

the bearing stiffness matrix is functioning of system 

geometric characteristics and bearings positions. 

In a second time, a modal analysis is realised. 

The system natural frequencies are computed.  

Finally, a dynamic study is presented. The 

displacements spectrums show the presence of two 

characteristics frequencies: the unbalance frequency 

which the origin is the unbalance load variation, the 

cage frequency which the origin is the bearing 

rotation. We note also a modulation of the unbalance 

frequency due to the bearing frequency. 
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