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Summary 

The paper focuses on the problem of fault detection and isolation for dynamic processes using 
selected recurrent neural networks. The main objective is to show how to employ some discoveries 
of the chaos theory for modeling processes by means of globally and locally recurrent neural 
networks. Both types of neural models are used in fault detection and isolation block. The 
performance of the FDI system is examined using two types of neural models: Jordan/Elman tower 
neural networks and networks with dynamic neural units. The paper contains numerical examples 
that illustrate the merits and limits of these two approaches. 
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DETEKCJA I LOKALIZACJA USZKODZE  PROCESÓW DYNAMICZNYCH  
Z U YCIEM SIECI REKURENCYJNYCH 

  
Streszczenie 

Tre  artyku  wi e si  z problemem detekcji i lokalizacji uszkodze  dla szerokiej gamy 
procesów dynamicznych z u yciem wybranych rekurencyjnych sieci neuronowych. G ównym 
celem jest pokazanie w jaki sposób mog  zosta  zastosowane niektóre z odkry  teorii chaosu do 
modelowania procesów z u yciem globalnych i lokalnych struktur neuronowych. Oba typy modeli 
neuronowych zosta y u yte w bloku detekcji i lokalizacji uszkodze . Sprawno  uk adu 
diagnostycznego porównana zosta a dla modeli procesów z zastosowaniem: sieci wielo-
kontekstowych Jordana/Elmana i sieci z neuronami dynamicznymi. W artykule zamieszczono 
przyk ady numeryczne wskazuj ce na zalety i wady obu podej . 

    
S owa kluczowe: detekcja i lokalizacja uszkodze , sieci Jordana i Elmana,  

sieci lokalnie rekurencyjne, teoria chaosu. 
 

1. INTRODUCTION 

 
The increasing complexity of technical means is 

known to be one of the most important problems in 
the modern control system design and analysis. 
Chemical refineries, electrical furnaces, aircrafts and 
even small inspection robots are complex systems 
and in some cases cannot be precisely described by 
classical mathematical models [3, 9, 10]. On the 
other hand, modern technical systems can be 
controlled despite faults affecting its components 
[2]. Due to these facts, fault diagnosis methods and 
fault-tolerant control design using soft computing 
techniques are gaining more and more attention in 
recent years [7, 8].  

There are a large number of real-world control 
problems that can not be solved by conventional 
(hard) computing methods and it is well-founded to 
use the human mind-based reasoning which is 
included in soft computing [23]. Nevertheless, soft 
computing is not always a sufficient  solution for our 
task. In numerous industrial applications hard 
computing plays a major role. As it can be observed, 

soft computing techniques are usually combined 
with traditional hard computing approaches  
in industrial products instead of using them 
separately [7]. 

In recent years, artificial neural networks, 
especially recurrent ones have attracted considerable 
research interest in the fields of control and 
diagnostic systems [1, 9]. On the one hand, results 
and data from industrial applications confirm human 
safety and economic efficiency of such approaches 
[7, 10], but on the other, there is still the need to 
elaborate much more general neural models that 
might be used for modeling both deterministic and 
stochastic processes simultaneously [8, 17].  

 Chaos together with the theory of relativity and 
quantum mechanics is considered as one of the three 
monumental discoveries of the twentieth century 
[24]. The peculiarities of chaotic systems can be 
given as follows: strong dependence of the behavior 
on initial conditions, the sensitivity to the changes of 
system parameters, presence of strong harmonics in 
the signals, fractional dimension of space state 
trajectories, at least one positive Lyapunov exponent 
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that characterizes the rate of separation of 
infinitesimally close trajectories [24].  

The paper contains numerical examples 
illustrating the performance of recurrent neural 
networks in two kinds of problems: time-series 
prediction and fault diagnosis of a simplified three-
tank benchmark system. The first task is to create  
a neural model of a process given by the differential 
equations. The main objective is to show how to 
employ some discoveries of the chaos theory for 
training considered neural networks. In this paper, 
two parts of this approach are used: applications of 
some chaotic systems to improve learning 
algorithms for recurrent neural networks and phase-
space reconstruction as the first step in the modeling 
of dynamic processes. The second task is to build  
the fault detection and isolation block for  
a benchmark problem based on recurrent neural 
networks. Finally, the last section summarizes the 
important features of these approaches and the paper 
concludes with the future work. 

 
2. RECURRENT NEURAL NETWORKS 

 

 Generally speaking, recurrent neural networks 
can be viewed as universal approximators for spatio-
temporal data [11, 12]. They can be classified into 
two categories: globally (totally or partially) 
recurrent and locally recurrent networks. In the first 
class, there are structures with feedback connections 
between simple static neurons of different layers 
or/and these of the same layer. The second one 
encompasses neural structures similar to static 
feedforward topologies, however they include 
dynamic neural units with internal feedback 
connections [9]. 
 

2.1.  Jordan/Elman tower neural networks 

 

Jordan and Elman networks were first introduced 
in [4, 5] and were classified as partially recurrent 
networks [9, 19]. These structures can learn 
sequential patterns and are usually employed to learn 
the grammatical structure of a set of sentences. 
However there are also their applications in the 
domain of system identification theory [18]. 
Jordan/Elman tower networks used herein differ 
from standard Jordan/Elman topologies in that they 
may have more than one state vector (Fig. 1). It is 
well-founded that such multi-state architectures have 
better learning abilities on certain tasks than 
standard Jordan/Elman ones of similar weight 
complexity [19, 20]. 

Outputs of the considered types of Jordan and 
Elman networks are defined as follows: 
 

21112
bbpuIWLWy kkk     (1) 

a) for multi-context Jordan networks: 
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b) for multi-context Elman networks: 
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where IW, LW are input and layer weight matrixes, 
y(k-i) and y1(k-i) represent output and hidden layer 
states, CW

i denoting the weight matrix in the i-th 
context layer, b is a bias vector,  is a non-linear 
function. 
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(b) multi-context Elman net 
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Fig. 1. Partially recurrent networks [19, 20] 

 
2.2.  Locally recurrent neural network 

 
Typical locally recurrent architecture is obtained 

by introducing dynamic elementary processors into 
the structure of a feedforward network [9]. Such 
models are frequently called locally recurrent 
globally feedforward neural networks. Some of the 
most important strategies for developing dynamic 
units and locally recurrent topologies, and their 
applications in areas of technical diagnostics can be 
found in [1, 8, 9, 10, 11].  

The topology of the network used herein is 
illustrated in Fig. 2. This structure has been 
introduced and discussed by the author in his 
previous papers [13, 14, 15]. In the first layer there 
are simple static neurons with a non-linear output 
function. The second hidden layer includes dynamic 
neurons with a non-linear output function. Such 
units are achieved by introducing linear dynamic 
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systems into its structure. The last layer consists of 
simple static units but the output function is linear. 
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Fig. 2. Locally recurrent network 

 
The output of the i-th layer of a locally recurrent 

network is computed using a non-linear or linear 
transform operator: 
  

iiii kky ,2                   (4) 

 
Internal states of neurons in the activation block of 
the i-th layer can be written using the polynomial 
notation in a vector form: 
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and also for the feedback block: 
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An associative input activation of neurons of the i-th 
layer is given by the following expression: 
 

kkk iiiii
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where IW

i
 is the matrix of external input weights, 

FW
i
 is the vector of feedback weights, i

n(k) 
denotes the vector with activation or feedback states 
of neurons in the i-th layer, i

A/F(k) represents the 
vector of the random process.  
 
 

3. NEURAL MODELLING 

 

The main objective of training process is to 
minimize some loss function. Due to this purpose 
and also to prevent other troubles such as the 
stability of a model and the local minima problem,  
a hybrid scheme is used for both types of neural 
structures. A global algorithm is able to reach the 
region near an optimum point relatively quickly by 
minimizing the combined function: 

m i

i

mmE 22
, tuy           (8) 

where  is a black box parameter, y( ) is a mapping 
from the input activities u to the output activities y,  
t is the target output, i is a network parameter. The 
second term in Eq. 8  is an additive weight-depend 
energy.  

As one can read in the previous paper of the 
author [14, 15] for the global optimization several 
algorithms may be used, for instance: Monte Carlo 
method, evolutionary algorithm, simulated 
annealing. Then the solution from the global 
optimization algorithm is used as an initial point for 
a local method that is faster and more efficient for 
local search. It may be realized by minimizing the 
function (8) for =0 by means of one of the 
following gradient-based algorithms: the Levenberg-
Marquardt method for relative small networks or the 
BFGS method for larger networks [16].  

The framework proposed by [6] is implemented 
in order to calculate the gradients and Jacobians for 
Elman/Jordan tower networks. There are two 
approaches considered: backpropagation-through-
time is used in the BFGS formula, whereas real-time 
recurrent learning is adapted for Jacobian calculation  
in the Levenberg-Marquardt method. For the locally 
recurrent network proposed by the author the 
gradient vector and Jacobian matrix are derived 
using a numerical differentiation method (e.g. using 
gradient-based stochastic optimization algorithm) 
[14]. Therefore there is no need to have the gradient 
or Jacobian information calculate analytically, but 
on the other hand, the algorithm works slow [15, 
16]. 
 To obtain good training and generalization 
abilities the optimal structure of a network should be 
found. Heuristic rules are usually used in the first 
step to determine an initial structure of the network 
[13]. Next, it is possible to apply direct search 
methods to change complexity of the network during 
the process of optimization of neural models by 
increasing or reducing the number of hidden layers 
(context layers), the number of units in layers, 
changing structures of dynamic systems embedded 
in the units, etc. It is strongly connected with  
a process of model evaluation. In this paper, several 
measures are employed such as: 
a) Mean Absolute Percentage Error: 

j m
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b) Akaike Information Criterion: 

m

d
EAIC T 2log                   (10) 

c) Minimal Description length Criterion: 

mdEmMDL T loglog          (11) 

where j is the number of outputs, m is the length of 
the data set, d is the number of estimated parameters, 
ET( ) is the loss function (Eq. 8) that is computed for  
a testing data set ( =0). 
 

3.1. Chaotic rules in global optimization 

algorithms 

 

 In order to improve the computational efficiency 
of the training process two modifications in global 
optimization algorithms are proposed by the author. 
A chaotic mutation operator similar to this used in 
[21] is introduced and a chaotic modification of the 
basic simulated annealing is adapted [22].   
 
Chaotic mutation operator 

 

 In this paper, the chaotic mutation function adds 
chaotic numbers taken from a Hénon distribution to 
each entry of the parent vector. The Hénon map is 
given by the following equations: 
 

jj
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where a=1.4, b=0.3. The variance of this distribution 
is determined by the parameters Scale ( 0) and 
Shrink ( ) at each iteration. The Scale parameter 
determines the variance at the first generation. The 
Shrink parameter controls how the variance shrinks 
as generations go by. 

J

k
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where J is the maximum number of iterations. The 
corresponding networks parameters are obtained by: 

           
kkkk Y1

                     (14) 

where Yk = {yj (j=1,2,…,d)}. 
 

Chaotic simulated annealing 

 

 The key idea of CSA [22] is to replace the 
Gaussian distribution by a chaotic sequence in the 
conventional simulated annealing. It is realized by 
applying the following well-known logistic map: 

kkk CCC 141
                        (15) 

There are three steps needed to adapt this 
algorithm for training neural models:  
a) chaotic initialization: C0

i (i=1,2,…,d) 
b) initialize the temperature T0  
c) conventional annealing iterations: For each of 

the initial value C0
i, generate Cj

i (j=1,2,…,J) by 
Eq. 15, where J is the maximum number of 
chaotic annealing iterations. The corresponding 

networks parameters are obtained by: j
i =  

(1- )Ci* +  Cj
i, where  is a constant. 

 

3.2.  Pseudo phase-space reconstruction 

 

Phase space reconstruction is usually the first 
step in the analysis of complex dynamic systems. In 
a large number of cases during observing real multi-
dimensional systems, there is no possibility to 
measure all of the variables simultaneously. Suppose 
we can observe only a one-dimensional time series 
g(k). The most common approach to attractor 
reconstruction is the method of delays. An method 
converts the time series g(k) into vectors Y(k) using 
time delay : 

T
kgkgkgkY      (12) 

where =D-1, D is the embedding dimension,  is 
the reconstruction delay. The quality of the 
reconstruction strongly depends upon these two 
parameters. The reconstruction delay is usually 
determined using mutual information, whereas for 
the second parameter one may make use of the false 
nearest neighbor analysis [15, 24]. 

 
4. SIMULATION STUDIES 

 
4.1. Time-series prediction 

In the following, the Duffing oscillation model is 
given in the form of a Takagi-Sugeno fuzzy model 
[24]: 
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fuzzy membership functions: M1(x1(t))=1-x1(t)/d
2, 

M2(x1(t))=x1(t)/d
2, d=50.  

 To obtain the time series values at integer points, 
the fourth-order Runge-Kutta method to find the 
numerical solution to the above Duffing system was 
applied (fixed-step size equals 0.01). Moreover, an 
additive noise was added (SNR=27dB) to this time 
series and a dawn-sample procedure was executed 
keeping every fifth sample starting with the first. 
The time-series prediction problem is formulated as 
follow: for known values of time series up to the 
point in discrete time, shall we say, k to predict the 
value at some point in the future, shall we say, k+H: 
 

Hkgkgkgkg  

 
where: the delay parameter is selected using the 
mutual information H= =9, whereas the embedding 
dimension is chosen using the false nearest neighbor 
analysis D=5 (see Sec. 3.2 for more details). 
  The first 1000 data values were used for training 
dynamic neural models while other 1000 data 
samples were applied in the testing stage (for 
Duffing orbit x1 only). For this task several 
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structures of globally and locally recurrent neural 
networks were examined in order to model chaotic 
behavior of the system. In the Fig. 3 there are 
presented results obtained for different hybrid 
training schemas of the exemplary Jordan neural 
network (four inputs, four hidden neurons, two 
context layers and one output). There were two 
hybrid schemas used: the SA-LM schema (110 iter. 
of the simulated annealing with T0=200 and 35 iter. 
of the Levenberg-Marquardt method) and the EA-
LM schema (30 iter. of the evolutionary algorithm 
with 0=0.8, =0.75 and 35 iter. of the LM method, 
a description of other parameters is omitted here but 
can be found in [14]). The averaging results show 
that chaotic modifications of conventional global 
algorithms lead to improve the performance of the 
training process. Similar effects were achieved for 
other recurrent structures.   
 
(a) 

 
(b) 

 
Fig. 3. Hybrid trainings of the Jordan neural network 

via different schemas 
 

 In Tab. 1 selected results are included. These 
attempts were done for the same EA-LM schema as 
above. As one can observe the best results are 
obtained for Jordan and LRNN networks and worse 
for Elman structures.   

Tab. 1. Selected results obtained for different  
recurrent neural structures (testing stage) 

Net Structure Param. MAPE AIC MDL 
Jordan 4-4(1)-1 29 2.187 1.204 1325 
Jordan 4-4(1,2)-1 33 2.257 1.162 1302 
Jordan 4-5(1,2)-1 41 1.928 0.922 1106 
Jordan 4-5(1,2,3)-1 46 2.710 1.661 1856 
Elman 4-4(1)-1 41 3.864 2.315 2473 
Elman 4-4(1,2)-1 57 10.91 4.297 4498 
LRNN 4-4(1,2,-)-1 37 6.129 4.473 4573 
LRNN 4-5(1,2,-)-1 46 2.551 1.442 1641 
LRNN 4-3-2(2,1,-)-1 32 2.675 1.839 1962 
LRNN 4-4-4(2,2,-)-1 61 2.403 1.816 2089 

 

4.2. The three-tank benchmark problem 

Let us consider the three coupled tanks depicted 
in Fig. 4 [13]. The main aim of the control system is 
to keep the water level in the tank T3 constant, while 
a water requirement q30 is changed randomly with an 
uniform distribution. The measured signals are: 
streams of the medium q1, q2 that flow into the first 
and second tank, control signals U1 and U2, levels in 
tanks L1, L2, L3 and, additionally, discrete signals h3L 
and h3H from two capacitive proximity switches 
signaling whether the medium level in the tank T3 is 
above or below the position of the sensor.  
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Fig. 4. The three-tank system 
 

For this example many different types of faults 
like clogs and leakages may be acquired (see Tab. 
2). In this paper only one fault is analyzed. Process 
faults f1, f2 and f3 are investigated: undesirable 
leakages from tanks appear after 33 min. for the next 
33 min. Faults f7 and f6 are realized by closing valves 
V13 and V32 in the middle of the simulation.  Sensor 
faults are created by subtraction a 30% signal level 
from their output on the time window as in previous 
cases.  

In general, it is very unlikely to have a chance to 
acquire the faulty data from industrial installations. 
However, in some cases, it is possible to create  
a precise mathematical model (i.e. using analytical 
methods) of a process taking into account fault-
tolerant philosophy [9]. Such models are used in 
order to generate data for training neural models 
(off-line). The main aim of this paper is to compare 
different types of neural networks structures in case 
of the fault-tolerant control benchmark test and the 
problem of availability of data is not discussed in 
detail. 
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Tab. 2. Set of faults for a three-tank system 
Fault Fault description 

f0 nominal conditions 
f1 undesirable leakage from the tank T1 
f2 undesirable leakage from the tank T2 
f3 undesirable leakage from the tank T3 
f4 Fault of the measuring channel 1 
f5 Fault of the measuring channel 2 
f6 Fault of the measuring channel 3 
f7 Clogging of the valve V13 
f8 Clogging of the valve V32 

 

Fault detection and isolation system 

 

The main idea of the FDI system (Fig. 5) is the 
same as in the previous paper of the author [13]. The 
group of three neural models (NN11, NN12, NN13) is 
used for residual generation, whereas the neural 
classifier NN2 is used for mapping the space of 
statistic features of residuals into the space of faults. 
In the features estimation block five statistic 
measures for each residual are applied: mean error 
(me), mean absolute error (mae), mean squared error 
(mse), standard deviation of errors (sde), variance of 
errors (ve). Statistic measures of residual signals are 
computed using a moving time-window of size 

k=200. 
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Three classes of neural networks were 

considered for residual generation block: L – locally 

recurrent net, J – multi-context Jordan net, E – 

multi-context Elman net. Each of them was trained 

using suitable faultless data (4000 samples). 

Structures of respective networks were determined 

basing on heuristic rules discussed in the literature 

[13]. The processing error for the training set was 

defined as the sum of squares errors. On the other 

hand, the error for the testing set was chosen as the 

mean absolute percentage error. In the training stage, 

networks parameters were adjusted for a maximum 

number of epochs or until the goal error was less 

than 10-2. It leaded to decrease mape below 2% for 

each neural model. 

 

Locally recurrent neural networks 154 ,2,

0
 

 

The notation in brackets means that the network 

consists of three processing layers with four inputs, 

five non-linear dynamic neurons and one linear 

output neuron. Only one hidden layer with 

hyperbolic tangent output function was sufficient to 

identify NN1i models accurately (mape <1%). 

Neural models were trained by means of the EA-LM 

hybrid scheme with chaotic mutation operator (30 

generations of the EA and 35 iterations of the LM). 

 

Multi-context Jordan neural networks 164 2,1  

The network consists of four processing layers 

with four inputs, six non-linear neurons, one linear 

output neuron and two context layers (q-1, q-2). The 

training process was carried out using the same 

learning-pattern set and also the same EA-LM 

hybrid schema as in the previous case.  

 

Multi-context Elman neural networks 164 2,1  

These structures are similar to the ones discussed 

previously, however, the internal states of the 

network are computed using signals from the hidden 

layer instead of these from the output.  

Fault detection and isolation were realized by 

means of the multilayer perceptron network (M). 

The structure 15-10-10-8 with hyperbolic tangent 

output functions in hidden layers and linear function 

in the output one was enough for mapping the space 

of statistical features of residuals into the space of 

faults. Training patterns were obtained for no-fault 

and fault states (256 examples). Scaled conjugate 

gradient back propagation method was used for 

updating network parameters (the maximum number 

of epochs was equal to 200). 

Table 3 presents results (%) obtained for testing 

data sets. Four FDI schemas are included: L-M – 

locally recurrent nets for residuals generation and 

the multilayer net for mapping statistical features of 

residuals into the space of faults, J-M multi-context 

Jordan nets and the multilayer net, E-M - multi-

context Elman nets and the multilayer net. 

The best results the author has received for the 

L-M schema. As one can observe, the performance 

of the described FDI system also increased when 

compared to the results obtained in the paper [13]. 
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Tab. 3. Results of fault detection and isolation 

* italic designation denotes results for neural models 

described in [13] 

 

5. CONCLUSION AND OUTLOOK 

 

Recurrent neural networks are well-known to be 

popular black-box type models for system 

identification and time series prediction. Partially 

recurrent and locally recurrent networks  are 

frequently used in the area of the technical 

diagnostics within FDI systems. In this paper, it was 

shown that the applications of such architectures 

aided by training algorithms with chaotic 

modifications lead to the improvement of the 

performance of FDI systems. It can be stated that all 

FDI schemes provide the fault detection efficiency 

greater than 95%. However, fault isolation by means 

of the L-M scheme is more effective. 

Finally, it can be assumed that much more 

complicated neural structures and training 

algorithms should be continuously developed to 

determine all potential advantages of this technique. 

 

6. FUTURE WORK 

 

The author plans to adapt this approach in the 

fault-tolerant control system of the inspection robot 

that is developed in the Department of Fundamentals 

of Machinery Design, Silesian University of 

Technology at Gliwice, carried out within the Multi-

Year Programme “Development of innovativeness 

systems of manufacturing and maintenance 2004-

2008”.  
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