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Summary 

The paper discussed the thesis that in vibroacoustic diagnostics using the nonlinear 

mathematical model is necessary. Natural specification of machine degradation is the frequency 

response function change and “additional” inputs related to defects remain usually as self-exited 

vibrations, which require the application of nonlinear description. Very often a new machine can 

be described with an adequate accuracy by a linear model. During exploitation certain nonlinear 

disturbances related to wear and tear - occur. Thus, an observation of nonlinear effects allows 

solving a diagnostic task. 
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O KONIECZNO CI STOSOWANIA W DIAGNOSTYCE  

WIBROAKUSTYCZNEJ MODELI NIELINIOWYCH 

Streszczenie

W artykule przedyskutowano potrzeb  stosowania w diagnostyce wibroakustycznej modeli 

nieliniowych. Naturalnym opisem degradacji maszyny jest zmiana funkcji odpowiedzi 

cz stotliwo ciowej, a „dodatkowe” wymuszenia zwi zane z uszkodzeniami pozostaj  z regu y

jako drgania samowzbudne, co z za o enia wymaga zastosowania opisu nieliniowego. Bardzo 

cz sto now  maszyn  mo emy opisa  z dobr  dok adno ci  modelem liniowym. W trakcie 

eksploatacji pojawiaj  si  i wzrastaj  nieliniowe zaburzenia zwi zane ze zu yciem. Tym samym 

obserwacja efektów nieliniowych pozwala na rozwi zanie zadania diagnostycznego. 

S owa kluczowe: efekty nieliniowe, diagnostyka wibroakustyczna. 

The problem of assessment of the machine state 

by means of vibrations and noise analysis is based 

– from the theoretical side – on the statement that, 

the vibroacoustic energy dissipation increases during 

the machine exploitation. Therefore a certain 

vibration or noise measure should exist, which in the 

moment - when further exploitation is dangerous 

– exceeds the permissible value. Such reasoning 

results from the adaptation of a model assuming 

an increase of dissipated energy during wear and 

tear as well as on the assumption that energy 

of parasitic vibroacoustic processes is proportional 

to the total dissipation of energy. Now-a-days the 

assumption of a general increase of energy 

consumed is not doubtful. We may assume that this 

is the proved law of nature. However, there is still 

a problem of developing the easiest mathematical 

notation and looking for the “optimal” model. 

It is well known, that the statement 

of proportionality of vibroacoustic energy 

to the total parasitic energy is a simplification from 

which might be – and actually are – exemptions. 

Examples, where a periodical lowering 

of the vibration level indicates a dangerous defect 

and where the “waving” of a trend of changing 

values being the measure of the vibroacoustic 

process occurs, are considered in the paper. 

It should be assumed that those phenomena 

are accompanied by increases of dissipation energy 

in other processes, mainly thermal ones, but also 

electric and hydraulic (e.g. an oil leakage from 

the damaged bearing can cause damping 

of vibrations). In the complicated structure 

of the mechanical system the effect of an apparent 

“self repairing” can occur and it may periodically 

lower the amount of dissipated energy and change 

proportions in between dissipation forms. 

It is presented pictorially in Figure 1. 

If, according to this short reasoning, we assume 

that there are cases when an increased level 

of vibrations and noises (in the whole observable 

range or in the selected bands) is not proportional 

to a wear, it will still not indicate that vibroacoustic 

processes are insensitive to it. The assumption 

arises, that the change of proportion in between 

individual forms of the dissipated energy can 

have its representation in the observed form 

of vibrations (even when the level remains 

constant or lowered). This phenomenon 

was investigated at analysing defects of rolling 

bearings, where – at the constant general level 

– the proportions between the dominating 
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amplitudes in the spectrum were changing. Similar 

results were obtained at checking hydraulic elements 

when investigating a multi-symptom index 

(vibrations + heat) and at diagnostics of a tool wear 

in the machining process. The mentioned 

phenomena have been observed during passive 

as well as active diagnostic experiments. Having an 

accurate recording of several symptoms – during 

the whole life-time – for the statistically 

representative sample of specimens one can 

establish significant dependencies. However, the 

difficult problem of assuming the proper model still 

remains to be solved. 
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Fig. 1. Utilising the diagnostic symptom 

in a machine diagnostics. 

Let us discuss the example presented in Figure 2 

showing the spectrum of vibration accelerations 

of the rolling bearing. An average value and average 

square value are the same as measurement accuracy. 
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Fig. 2. Example of „iso-energy” evolution 

of a spectral power density of the vibration 

acceleration during the machine wear 

(rolling bearing). 

A frequency distribution is – of course 

– completely different. Taking into account only 

the module, or more precisely the spectral power 

density and disregarding phase shifts, let us discuss 

which transformation should be applied to the 

dynamic system in order to transform spectrum “a” 

into spectrum “b”. Let us assume, at first, that 

the system is linear and discrete. Both spectra were 

obtained from the observation of the machine steady 

state, it means under conditions when inputs 

are stable processes of the dominating participation 

of determined and periodical components.  Let us 

neglect – for the time being – random disturbances. 

Let the system has n degrees of freedom. Both 

spectra, “a” and “b”, concern  “normal” working 

conditions. Thus, neither a loss of stability nor a loss 

of continuity of solution as a function of parameter 

changes occurs. Such situation would correspond 

to the essential defect of a device. During the time 

elapsing between both observations the system 

evolution could have occurred and probably have 

done so. This evolution manifested itself by small 

changes of coefficients; it means elements of matrix 

of inertia, damping and rigidity and by 

an occurrence of new – generally weak – excitations 

and also by eventual decreasing of previous forces. 

This last phenomenon can be omitted as being 

of a low probability. Let us assume further, that 

there are m poly-harmonic inputs (where m < n).

The amplitude spectrum for a linear system 

is formed as the result of the following 

transformation: 

1

( ) ( ) ( , , , )    1
m

i i j j j

i

Y f P f H f m k c j n  (1) 

where:

Pi – Fourier transform of excitation moments, 

Hi – Transmittance. 

Each transmittance, and more accurate 

its module – it means the coefficient 

of amplification, has as many extremes as degrees 

of freedom of the system (natural frequencies). 

The set of transmittances is explicitly determined 

by 3·m parameters. Equation (1) must be satisfied 

for each frequency of the output spectrum. 

At assuming a spectrum discretisation into k

elements we have k+2 equations. An addition 
of number 2 results from the postulate of the average 

and average square value conservation. 

At the assumption that the system inputs were not 

changed and that all coefficients (parameters) 

of mass, rigidity and dissipation could have changed, 

the minimum number of degrees of freedom 

of the linear system enabling transformation 

of the response ( ) ( )( ) ( )a bY f Y f equals: 

2

3

k
n  (2) 

Equation (2) regardless of the fact, that 

it requires generating a huge number of equations, 

has only a formal meaning. It determines precisely 

the minimum number of degrees of freedom 

enabling – at the preserved model structure 

– the possibility of the given change 

of the frequency response structure without 

changing inputs and at assuming the application 

of outside forces in each degree of freedom 

and the possibility of a free selection 

of all coefficients. Physical realisability 

of such system is practically impossible. 

In the actual diagnostic tasks, investigating 

an evolution of a device, the change of a dynamic 

response structure depends on changes of the 

insignificant part of parameters (the ones responsible 
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for the defect). Thus, the number of the necessary 

equations should be multiplied by coefficient ,
defined by the ratio of invariable elements (degrees 

of freedom), to the ones in which certain number 

of parameters are changing (usually not all) 

and by coefficient 1 , which denotes the ratio 

of all degrees of freedom to the ones receiving 

energy from outside. When the number of spectral 

lines, taken into account, is limited to 100 

the number of degrees of freedom of the system 

should amount to several thousands. This 

is the condition for the identificability of the system; 

it means that changes of actual parameters (in our 

example: state variables) should be transformable 

by the determined and mutually explicit procedure 

into the model parameters changes. However, 

regardless of the mentioned difficulties, there 

is a possibility of obtaining such solution. Therefore 

the application of the linear software FEM 

has allowed to solve several problems described 

analytically as nonlinear. Simplifying a little 

the consideration, we can state that the presented 

operations are based on reducing the globally 

nonlinear influences to locally linear ones

and the increase of the number of degrees 

of freedom of the system results from decreasing 

the zone considered to be the “local” area – up 

to the determined limit of error. This linearisation 

corresponds de facto to the approximation of a curve 

by a certain number of segments. 

Let us return now to our assumptions. We have 

assumed at the beginning, that the response 
a

Y f was the result of linear transformations 

of inputs, which means that the sum of inputs 

and outputs from the system should fill the same 

frequency bandwidth. Thus, each harmonic 

component of the input corresponds to one and only 

one harmonic component of the response, which 

usually has different amplitude, slightly changed 

frequency (because of damping) and different phase 

shift (what was not taken into account in our 

reasoning) but surely will not decompose into 

a sequence of components. In the discussed example 

no spectrum of the system response 
a

Y f nor

b
Y f    can be obtained at inputs of a smaller 

number of components.  In diagnostic tests – during 

machine exploitation - new harmonic components 

appear very often and the value of their amplitude 

is considered the symptom. Such transformation 

in a linear system requires applying a new 

excitation, which – in the diagnostic test – would 

need a postulate that each defect (wear) constitutes 

such force. This is an evident contradiction. 

We assumed at the beginning, that the 

transformation of spectral concentration 
( ) ( )( ) ( )a bY f Y f  is isoenergetic ( 2 =const), 

whereas each defect would have been described 

by the energy “inflow” from outside. However, 

supporters of a linear description for any cost (which 

really means: for the cost of a tremendously 

increased number of motion equations) could find 

the solution of the problem by assuming 

simultaneous decrease of primary inputs caused 

by other means of energy loss due to wear, but 

the model obtained in such manner would 

not be identifiable. 

Natural specification of machine degradation 

is the frequency response function (transmittance) 

change and “additional” inputs related to defects 

remain usually as self-exited vibrations, which 

require the application of nonlinear description, etc. 

The presented above considerations lead 

to the conclusion that a classic diagnostic task very 

often requires application of a nonlinear description. 

The following postulate can be formulated 

on the basis of numerous papers: A new (“after 

an initial usage”) machine can be described with 

an adequate accuracy by a linear model. During 

exploitation certain nonlinear disturbances related 

to wear and tear – occur. Thus, an observation 

of nonlinear effects allows solving a diagnostic 

task.

This postulate is also true for technical devices, 

which operations require a nonlinear description 

from the ‘very beginning’ (e.g. piston-and-crank 

mechanism). In such situation we will observe 

an increase of nonlinear disturbances. Besides, 

“a diagnostic” model does not need to be a fully 

“dynamic” model. 

Let us solve now a simple example. An ordinary 

differential equation of the 2nd order in a form 

of a simple harmonic oscillator – is given: 

2

0 ( )x x P t

with an input: 

( ) cos2P t P t .

An evident singular solution is a well-known 

“school type” dependency: 

2 2

0

( ) cos2
P

x t t  (3) 

Let us check whether finding the singular 

solution of a frequency being equal e.g. to the half 

of the input frequency  in the form: cosx A t

is possible. By substitution we obtain the following 

equation: 

2 2

0cos ( ) cos2A t P t , (4) 

which satisfaction for each t requires zeroing 

of the input amplitude at the arbitrary amplitude 

of response. Thus, it leads to an obvious triviality. 

Let us assume the possibility of modification 

of the basing equation by introducing an arbitrary 

nonlinear function of variable x(t) and let us check 

whether now obtaining the response of the frequency 

equal half of the input frequency is possible. 

The task is as follows: 
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2

0cos2 cos : ( ) cos2

( ) ?

P t x A t x x f x P t

f x
. (5) 

Proceeding in an identical fashion as previously 

and transforming the input we will obtain: 

2 2 2

0

1
cos2 cos2 ( cos ) (cos 1)

2
A t A t f A t P t . (6) 

This equation is much better and at the proper 

selection of f(x) function its identity satisfaction 

is possible. E.g. assuming: 

2 1f x k x

we will obtain: 

2 2 2

0

2 2 2

0

 ( ) cos2 (cos 1)

1
(cos 1)

2

2

2

1

t
A t kA t

P t

P kA

P k

A

. (7) 

This is a special case, relatively difficult – 

however possible at the appropriately selected 

kinematics – for the technical realisation. 

It corresponds to the situation when the properly 

selected input force amplitude of the resonance 

frequency instead of increasing the first harmonic 

“releases” vibrations of a different frequency. This, 

in turn, corresponds to changing the phase trajectory 

into a certain limiting cycle and constitutes a certain 

form of self-exited oscillations, in which 

a restitution function described by an even function 

(“full” parabola) becomes an “amplifier”. However, 

the discussion of the obtained results is not 

significant in this case. The example should 

be treated as a mathematical “plaything”, which 

indicates – in a very simple manner – the possibility 

of generating, by a nonlinear system, the response 

of the frequency different than the input frequency. 

P cos t A cos 1t + B cos 2 2 t +...

1 = +

Fig. 3. Nonlinear system as frequency transformer. 

Much more physically real would be an example 

of a double frequency response – according 

to the schematic presentation from Figure 3, 

but finding function f(x) is not simple, similarly 

as a function causing a sub-harmonic response, 

for various amplitudes and frequencies of inputs. 

A solution of such problem requires an application 

of analytical approximate methods or simulation 

methods, exactly the same as applied at solving 

nonlinear differential equations. Mathematical laws 

are not to be avoided. A solution of nonlinear 

problem is obtained in an approximate form “in both 

ways”, the most often in a series and infinite form.  

The fact, that the first and the second approximation 

are usually confirmed by experiments indicates that 

nonlinear models are worth to be applied now a days 

when calculation tools are highly developed. 

Features of nonlinear models are as follows: 

1. Principle of superposition is not binding; 

2. The system response can have and generally has 

the different frequency distribution that the input; 

3. System transmittances depend on themselves and 

on inputs (they are not system invariables); 

4. Local transient states can occur (example 

of „bended” amplitude-frequency characteristics 

is known from each text-book on the vibration 

theory); 

5. Resonance responses can occur at frequencies 

being an arbitrary linear combination of input 

and natural frequencies, including an effect 

of the so-called internal resonance; 

6. Self-exited vibrations can occur. 

Diagnostics specialists know all mentioned 

above features from the observation of actual 

objects. The situation presented in Fig. 2 

is a typical example of a frequency conversion.  

Resonant increases of the amplitude in bands, 

in which the vibration level in a new machine was 

low, local losses of motion stability, generation 

of self-exited vibrations, as well as strong 

dependence of parasitic vibration processes 

on the load – are typical symptoms frequently 

utilised in vibroacoustic diagnostics. 

Thus, purposefulness of application nonlinear 

descriptions seems to be doubtless similarly 

as looking for vibration measures (more 

precisely: methods and techniques of signal 

analysis) sensitive to the nonlinear disturbances 

evolution.
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