Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The work is devoted to problem solution of the gas-turbine engines (GTE) blades condition monitoring and diagnosis of the crack-like damages at the steady-state and non-steady-state modes of GTE. It is based on the development of theoretical basis of the vibroacoustical diagnosis methods, the application of the modern signal processing methods and new information technique for decision making. The application of the following signal processing methods: Wavelet-transformation and dimensionless characteristics of the vibroacoustical signals is proved. Neural networks are used for decision making about blades condition by the above mentioned features application. Classification of turbine blade condition was carried out using a two-layer Probability Neural Network (PNN).
Czasopismo
Rocznik
Tom
Strony
71--74
Opis fizyczny
Bibliogr. 4 poz., rys.
Twórcy
autor
autor
- National Technical University of Ukraine "KPI" Ukraine, 03056 Kiev, Peremogy Prosp., 37, burau@pson.ntu-kpi.kiev.ua
Bibliografia
- 1. Bouraou N. I., Marchuk P. I., Tyapchenko A. N.: Condition Monitoring Diagnosis Method of Aircraft Engine Rotating Details, in Proceedings of the 15th World Conference on Non-Destructive Testing, 11pp.
- 2. Wong C. W., Zhang W. S., Lau S. L.: Periodic forced vibration of unsymmetrical piecewise-linear systems by incremental harmonic balance method. J. of Sound and Vibration, p.91-105.
- 3. Buraou N., Sopilka Yu., Protasov A.: The features Detection of the small rigidity faults of rotary machine elements. In Review of Progress in QNDE, p.152.
- 4. Sankar K. Pal. and Sushmita M.: IEEE Transaction on Neural Networks, 3, #5, 683- 696 (1992).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0038-0045