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Summary
In the first part of this work the some methods of the location of a transverse crack in beam like
structure based on wavelet analysis of mode shape is described. In this part of work this quantity
was used for identification of crack depth. An input quantity for identification the frequency
response function FRF was chosen. The crack is substituted by rotational spring, which flexibility
¢, 1s calculated by using Castigliano theorem and laws of the fracture mechanics. Based on inverse
model of forced vibration cracked beam the depth of crack was identified.
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DETEKCJA PEKNIECIA W ELEMENTACH BELKOWYCH
CZESC 1I. IDENTYFIKACJA GLEBOKOSCI PEKNIECIA

Streszczenie

W pierwszej czesci pracy opisano metode wyznaczenia lokalizacji peknigcia w oparciu o ciagla
i dyskretng transformate falkowa zastosowang do analizy wektorow wiasnych. W tej czgsci pracy
wykorzystano t¢ wielko$¢ do identyfikacji gtebokosci peknigcia. Jako wielkos¢ wejsciowa procesu
identyfikacji wykorzystano charakterystyke amplitudowo — czgstotliwosciowa. Jako model
peknigcia przyjeto przegub sprezysty, ktorego podatno$¢ wyznaczono na podstawie praw
mechaniki pekania i twierdzenia Castigliano. Wykorzystujac taki opis pgknigcia wyznaczono
model odwroty drgan wymuszonych belki, z ktérego wyznaczono glgbokos¢ peknigcia

Stowa kluczowe: identyfikacja pgknigcia, drgania wymuszone.

1. INTRODUCTION

The detection of damages in structural elements
determines the serious challenge for present
technique. The used at present non-destructive
procedures of diagnosis the damages, it means the
method: visual observations, ultrasonic,
radiographical, or magnetical analysis, possess the
many essential limitations. The most often to
effective their utilization, it is necessary to carry out
many of additional actions connected with
correctness of diagnosis process, as well as the
a priori knowledge about the place of potential
damage. From here using these methods in places
with difficult access, and on early stage of damage
evolution is limited and burdened with large
uncertainty.

Mentioned above conditions required research on
finding the new methods of damage detection, the
global one, which based on changes of dynamic
response of constructions, would permit to estimate
degree of damage.

A crack diagnostic system can have four levels
[1]:

e level 1: the presence of crack,
e level 2: the geometric location of crack,
e level 3: the quantification of the crack depth,

e level 4: the prediction of the remaining service
live of the structure.

In part 1 of this work some methods for detection
of the transverse crack location in beam like
structure are described. These methods are based on
discrete and continuous wavelet transform of
a modal vector.

In this part of work this quantity was used for
identification of crack depth (3-rd level of crack
diagnostics). An input quantity for identification the
frequency response function FRF was chosen. The
crack is substituted by rotational spring, which
flexibility ¢, is calculated by using Castigliano
theorem and laws of the fracture mechanics. Based
on inverse model of forced vibration of cracked
beam the depth of crack was identified.

2. FORCED VIBRATION OF THE CRACKED
BEAM

The equation of the harmonic forced vibration of
the beam with crack in co-ordinate x=x, has form:

(4) 4y _ " "
X =AX=cg - X"(x),) 0"(x,x,)+
—F-o(x,x,)
The solution of the equation (1) can be found in

class of generalized function. The function given by
(2) is a solution of equation (1):

(M
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X =X Cg X"
(x)= °<x)+ﬂ (x,)-

[sinh A(x—x,)+sin A(x—x,)]H(x,x,)+
B

2-EI-7°

[sinh A(x—x ;) +sin A(x—x ;)]H (x,x /)

where:
X = Pcosh Ax + QO sinh Ax + R cos Ax + S sin Ax,

6(x,x,) - Dirac delta function at x = x,, H(x,x,)

2)

- Heaviside step function at x =x,, 1 =w?pd/EI,

p - beam material density, 4 — cross-sectional area.
Amplitude of forced vibrations In measured
point with coordinate x = ¢ has form:

X=X %
(0= 0(0)+ﬁ'

[sinh A(c—x,)+sin A(c—x,)]H(c,x,)+
.
2-EI- 2

‘[sinh A(c—x,)—sin A(c—x,)]H(c,x /)
where:
X (c)=Pcosh Ac+Qsinh Ac+ Rcos Ac+ Ssin Ac .

Integration constants P, O, R, S depends on the
beam boundary conditions.

The course of action at the identification of crack
depth for which an input quantity is the amplitude of

forced vibrations is shown on the cantilever beam
example.

3)

2.1. Cantilever beam

Analysed beam model in fig. 1 is showed

Xp JF
v

aANAN\N
<

/

Fig. 1. Cantilever beam with crack

For beam showed on fig. 1 the boundary
conditions are described by equations X(0)=0,
X'(0)=0, X"(H=0, X"(/)=0.

The boundary conditions equation for beam can
be written in matrix form:

M-CS=W 4)
where matrix M:

1 0 1 0 0
0 1 0 1 0
coshAl sinhA/ —cosAl —sindl a,
sinh A/ coshA/ sinAl —cosAl a,
chix, shidx, cosdx, sindx, -1

where:

c
ass =55 finh A1 -x,)=sin 2 - x,)]

Cc
ays =5 losh 20—, ~cos 20—, )]
vector of constants CS:
cs’=[p 0 RS X',
and vectors of W:

0
0

F . .
m . [smh Z(Z - Xf) —Sm ﬂ,(l - Xf)]

m . [cosh Al =x;)—cosA(l - xf)]

E]; = [sinh 2(x, —x,) +sin ACx, —x ) JH (x,.x,)

If excitation frequency is different from any
natural beam frequency the Cramer’s rule can be
used for solving of equation (4).

For solution the identification problem, some
procedure will be proposed.

3. INVERSE MODEL OF CRACKED BEAM

For solution the identification problem will be
proposed following methodology, which permits to
create of computer algorithm:

1. in main matrix M one should replace value ¢, with
1 (one) — this matrix is named A;

2.one should construct matrix named B, from
matrix A by eliminate last row and last columns;

3. at such denotation main matrix determinant can be
written as:

IM| = c, - (det(A) + det(B)) - det(B)

4. one should construct 5 others matrix C; obtained
from matrix A by replacing i-th column by vector
W (i =1,2,34,)5);

5. in way described in point 2 one should construct
from matrices C; other matrices named Dj;

6. introducing denotation:

L; =det(A) + Ly; L, = det(B);

L; = det(Cy) + Ly; L, = det(Dy);

Ls = det(Cy) + Ly; L = det(D5);

L; = det(C3)+ Ly; Lg = det(D3);

Lo = det(Cy)+ Lio; Lo = det(Dy);

L, = detCs);

integration constants can be obtain from equation:

cg-Ly—Ly . cg-Ls—Lg '
cg-Li—-L,~ cg-L—-L,’
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C L7_L8 C 'L9_L10
c,-L,-L,"’ c,-L,-L,

X"(x,) oL L,
7. for location of crack x, which was determined in
part one of this work, the flexibility ¢, can be
obtain from equation:
Lp—-L,-Z
s ©)
N L H
where:
L, =L, coshAc+Lg sinh Ac+Lg sin Ac+ Ly cos Ac

Ly =L coshAc+Lssinh Ac+ L, sin Ac+Lg cos Ac

L
Ly =t [sinh A(c—x ) +sin A(c—x,)]- H(e,x,)

Z =POM(c)+———-
2-El-2°

‘[sinh A(c—x,)—sin A(c—x,)]H(c,x )

POM( ¢) — is measured value of vibration amplitude
in beam coordinate x = c.

Using described above methodology the
flexibility ¢, can be determined for each frequency
and corresponding vibration amplitudes of FRF.

4. CRACK DEPTH IDENTIFICATION

Some methods based on discrete and continuous
wavelet transform for the crack location
determination in part one of this work have been
described. The results of this identification is used to
the quantification of the crack depth. The crack
depth identification based on the described above
inverse model of beam.

In fig. 2 the FRF of cantilever beam obtained as
a computer simulation by finite element analysis.
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Fig. 2. FRF for the cantilever beam

In fig. 3 the identified local flexibility c,,
determined (from equation 5) for each frequency
below the first natural frequency and corresponding
amplitudes of vibration of FRF is showed.
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Fig. 3. Identified local flexibility c, as
a function of frequency excitation

Having identified the flexibility c, (as a mean
value identified for each frequency) the depth of
crack have been determined.

Table 1 summarizes the modelled and identified
crack depth with relative error of identification.

Table 1 Crack depth identification

modelled identified identified | relative
crack flexibility c, crack error
depth depth
0.1 2.8946*10° 0.099 1.0 %
0.2 11.295%10° 0.201 0.5%
0.3 26.447*10° 0.300 0%
0.4 51.792%10° 0.401 0.04 %
0.5 95.267*10° 0.498 0.4 %

In fig. 4 the FRF with some error due to measure
and signal processing is showed.
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Fig. 4. FRF with some errors

In fig. 5 the identified local flexibility c,,
determined (from equation 5) for each frequency
below the first natural frequency and corresponding
amplitudes of vibration of FRF is showed.
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Fig. 5. Identified local flexibility c, as
a function of frequency excitation

Table 2 summarizes the modelled and identified
from amplitudes determined with error (addition 3 %
of amplitude multiplied by random value from (-1;1)
range) crack depth with relative error of
identification.

Table 1 Crack depth identification
identified

modelled

crack mean crack relative
value of ¢ error
depth 8 depth
0.1 2.832%10° 0.098 2%
0.2 11.281%10° 0.202 1%
0.3 26.321%107 0.299 0.33 %
0.4 52.026%10° 0.401 0.25 %
0.5 95.490%10 0.501 0.2 %

5. SUMMARY

In part 2 of this work some method of crack
depth determination (3-rd level of crack diagnostics)
is described. Presented method is based on the crack
location identification described in part 1 of this
work.

The depth identification is based on FRF and
inverse model of beam.

This work was done as a part of research project
N 504 042 32/3443
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