PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial intelligence in technical diagnostics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sztuczna inteligencja w diagnostyce technicznej
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problems of robust fault detection using soft computing techniques, particularly neural networks (Group Method of Data Handling, GMDH), neuro-fuzzy networks (Takagi-Sugeno (T-S) model) and genetic programming. The model-based approach to Fault Detection and Isolation (FDI) is considered. The main objective is to show how to employ the bounded-error approach to determine the uncertainty defined as a confidence range for the model output, the adaptive thresholds can be defined. Finally, the presented approaches are tested on a servoactuator being an FDI benchmark in the DAMADICS project.
PL
W artykule rozpatruje się problemy odpornej detekcji uszkodzeń z wykorzystaniem technik obliczeń inteligentnych, a w szczególności sieci neuronowych (Group Method of Data Handling, GMDH), sieci neuronowo-rozmytych (model Takagi-Sugeno) oraz programowania genetycznego. Rozpatruje się układ detekcji i lokalizacji uszkodzeń z modelem. Głównym celem jest pokazanie jak zastosować metodę ograniczonego błędu do wyznaczenia niepewności modeli neuronowych i rozmytych. Pokazano, że korzystając z wyznaczonych niepewnych modeli obliczeń inteligentnych zdefiniowanych w postaci przedziałów ufności dla wyjścia modelu można zdefiniować adaptacyjny próg decyzyjny. W ostatniej części efektywność rozpatrywanych podejść ilustrowana jest na przykładzie układu diagnostyki inteligentnego urządzenia siłownik-ustawnik-zawór z projektu DAMADICS.
Czasopismo
Rocznik
Tom
Strony
7--16
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski, ul. Podgórna 50, 65-246 Zielona Góra, j.korbicz@issi.uz.zgora.pl
Bibliografia
  • 1. Blanke M., Kinnaert M., Lunze J. and Staroswiecki M. (2003): Diagnosis and Fault-Tolerant Control. New York: Springer-Verlag.
  • 2. Boutayeb M. and Aubry D. (1999): A strong tracking extended Kalman observer for nonlinear discrete-time systems. IEEE Trans. Automatic Control, Vol. 44, No. 8, pp. 1550–1556.
  • 3. Calado J. M. F, Korbicz J., Patan K., Patton R. J. and Sa da Costa J. M. G (2001): Soft computing approaches to fault diagnosis for dynamic systems. European Journal of Control, Vol. 7, No. 2-3, pp. 248–286.
  • 4. Calado J. M. F., Sa da Costa J. M. G., Bartys M. and Korbicz J. (2006): FDI approach to the DAMADICS benchmark problem based on qualitative reasoning coupled with fuzzy neural networks. Control Engineering Practice, Vol. 14, No. 6, pp. 685–698.
  • 5. Chen J. and Patton R. J. (1999): Robust Model Based Fault Diagnosis for Dynamic Systems. London: Kluwer Academic Publishers.
  • 6. DAMADICS (2002): Website of the RTN DAMADICS: Development and Application of Methods for Actutator Diagnosis in Industrial Control Systems http://diag.mchtr.pw.edu.pl/damadics
  • 7. Frank P. M., Schreier G. and Garcia E. A. (1999): Nonlinear observers for fault detection and isolation, In: New Directions in Nonlinear Observer Design (Nijmeijer H. and T. Fossen, Eds.) Berlin: Springer-Verlag.
  • 8. Gupta M. M., Jin L. and Homma N. (2003): Static and Dynamic Neural Networks. From Fundamentals to Advanced Theory. New Jersey: Wiley.
  • 9. Haykin S. (1999): Neural Networks. A omprehensive Foundation. New Jersey: Prentice-Hall.
  • 10. Hui S. and ˙Zak S. H. (2005): Observer design for systems with unknown input. Int. J. Appl. Math. and Comput. Sci., Vol. 15, No. 4, pp. 431–446.
  • 11. Isermann R. (2006): Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance. New York: Springer-Verlag.
  • 12. Ivakhnenko A. G. and Mueller J. A. (1995): Selforganizing of nets of active neurons. System Analysis Modelling Simulation, Vol. 20, pp. 93–106.
  • 13. Janczak A. (2005): Identification of Nonlinear Systems Using Neural Networks and Polynomial Models. A Block-oriented Approach. Lecture Notes in Control and Information Sciences, Vol. 310, Berlin: Springer-Verlag.
  • 14. Koivo H. M. (1994): Artificial neural networks in fault diagnosis and control. Control Engineering Practice, Vol. 2, No. 7, pp. 90-101.
  • 15. Korbicz J. (2006): Fault detection using analytical and soft computing methods. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 54, No. 1, pp. 75–88.
  • 16. Korbicz J. (Ed.) (2006): Soft Computing in Control and Fault Diagnosis. Special section in Int. J. Appl. Math. and Comput. Sci., Vol. 16, No. 1, pp. 7–114.
  • 17. Korbicz J. and Bidyuk P. I. (1993): State and Parameter Estimation. Digital and Optimal Filtering, Applications. Technical University of Zielona Góra Press.
  • 18. Korbicz J., Kościelny J. M., Kowalczuk Z. and Cholewa W. (Eds.) (2004): Fault Diagnosis. Models, Artificial Intelligence, Applications. Berlin: Springer-Verlag.
  • 19. Korbicz J., Kościelny J. M., Kowalczuk Z. and Cholewa W. (Eds.) (2002): Diagnostyka procesów. Modele, Metody sztucznej inteligencji, Zastosowania. Warszawa: Wydawnictwo Naukowo Techniczne, WNT, (in Polish).
  • 20. Korbicz J., Kowal M. (2007): Neuro-fuzzy networks and their application to fault detection of dynamical systems. Engng. Appl. of Artif. Intelligence, Vol. 20, pp. 609–617.
  • 21. Korbicz J. and Mrugalski M. (2008): Confidence estimation of GMDH neural networks and its application in fault detection systems. Int. J. System Science, (accepted).
  • 22. Korbicz J., Patan K. and Kowal M. (Eds.) (2007): Diagnostics of Processes and Systems.Warszawa: Akademicka Oficyna Wydawnicza EXIT, (in Polish).
  • 23. Korbicz J., Patan K and Kowal M. (Eds.) (2007): Fault Diagnosis and Fault Tolerant control. Warszawa: Akademicka Oficyna Wydawnicza EXIT.
  • 24. Korbicz J., Patan K. and Obuchowicz A. (2001): Neural network fault detection system for dynamic processes. Bulletin of the Polish Academy of Sciences. Technical Sciences., Vol. 49, No. 2, pp. 301–321.
  • 25. Korbicz J., Obuchowicz A. and Uciński D. (1994): Artificial Neural Networks. Fundations and Applications. Warsaw: Akademicka Oficyna Wydawnicza EXIT, (in Polish).
  • 26. Korbicz J. and Kowal M. (2007): Neuro-fuzzy networks and their application to fault detection of dynamical systems. Engng. Appl. Artif. Intelligence, Vol. 20, pp. 609-617.
  • 27. Kościelny J. M. (2001): Diagnostyka zautomatyzowanych procesów przemysłowych. Warszawa: Akademicka Oficyna Wydawnicza EXIT, (in Polish).
  • 28. Kowal M. (2005): Optimization of Neuro-Fuzzy Structures in Technical Diagnostics. Lecture Notes in Control and Computer Science, Vol. 9, University of Zielona Góra Press.
  • 29. Kowal M. and Korbicz J. (2006): Robust fault detection using neuro-fuzzy models. Przegląd Elektrotechniczny, No. 1, pp. 32–36.
  • 30. Koza J. R. (1992): Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge: The MIT Press.
  • 31. Köppen-Seliger B. and Frank P. M. (1999): Fuzzy logic and neural networks in fault detection. In: Fusion of Neural Networks, Fuzzy Sets, and Genetic Algorithms (L. Jain and N. Martin, Eds.). New York: CRC Press, pp. 169–209.
  • 32. Ligeza A., Fuster-Parra P. (1997): And/or/not causal graph – a model for diagnostic reasoning. Appl. Math. and Comput. Sci., Vol. 7, No. 1, pp. 183–203.
  • 33. Michalewicz Z. (1996): Genetic Algorithms + Data Structures = Evolution Programs. Berlin: Springer-Verlag.
  • 34. Milanese M., Norton J., Piet-Lahanier H. and Walter E. (1996): Bounding Approaches to System Identification. New York: Plenum Press.
  • 35. Mrugalski M. (2003): Neural Network Based Modelling of Nonlinear Systems in Fault Detection Schemes. Ph.D. thesis, University of Zielona Góra, Faculty of Electrical Engineering, Computer Science and Telecommunications, (in Polish).
  • 36. Mrugalski M. and Korbicz J. (2005): Robust fault detection via GMDH neural networks. Proc. 16-th IFAC World Congress, Prague, Czech Republic, CD-ROM.
  • 37. Obuchowicz A. (2003): Evolutionary Algorithms for Global Optimization and Dynamic System Diagnosis. Zielona Góra: Lubuskie Towarzystwo Naukowe.
  • 38. Osowski S. (2006): Artificial Neural Networks for Information Processing. Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej, (in Polish).
  • 39. Patan K. (2007): Stability analysis and the stabilization of a class of discrete-time dynamic neural networks. IEEE Trans. Neural Networks, Vol. 18, No. 3, pp. 660-673.
  • 40. Patton R. J., Frank P. M. and Clark R. N. (2000): Issues of Fault Diagnosis for Dynamic Systems. Berlin: Springer-Verlag.
  • 41. Patton R. J. and Korbicz J. (Eds.) (1999): Advances in Computational Intelligence for Fault Diagnosis Systems. Int. J. Appl. Math. and Comput. Sci., Special Issue, Vol. 9, No. 3, pp. 471–735.
  • 42. Patton R. J., Korbicz J. and Lesecq S. (Eds.) (2006): A Benchmark Study of Fault Diagnosis for an Industrial Actuator. Control Engineering Practice, Special Issue, Vol. 14, No. 6, pp. 575–717.
  • 43. Patton R. J., Korbicz J., Witczak M. and Uppal F. (2005): Combined computational intelligence and analytical methods in fault diagnosis. In: Intelligent Control Systems using Computational Intelligence Techniques (Rauno A. E. (Ed.). London: The IEE Press, pp. 349–392.
  • 44. Piegat A. (2003): Modelling and Fuzzy Systems. Warszawa: Akademicka Oficyna Wydawnicza EXIT, (in Polish).
  • 45. Rutkowska D. (2002): Neuro-Fuzzy Architectures and Hybrid Learning. Heidelberg, New York: Physica-Verlag, Springer-Verlag Company.
  • 46. Walter E. and Pronzato L. (1997): Identification of Parametric Models from Experimental Data. London: Springer.
  • 47. Witczak M. (2007): Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems. Lecture Notes in Control and Information Sciences, No. 354, Berlin, Heidelberg: Springer.
  • 48. Witczak M. (2006): Advances in model-based fault diagnosis with evolutionary algorithms and neural networks. Int. J. Appl. Math. and Comput. Sci., Vol. 16, No. 1, pp. 85–99.
  • 49. Witczak M., Korbicz J., Mrugalski M. and Patton R. J. (2006): A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem. Control Engineering Practice, Vol. 14, No. 6, pp. 671–683.
  • 50. Witczak M., Obuchowicz A. and Korbicz J. (2002): Genetic programming based approaches to identification and fault diagnosis of non-linear dynamic systems. Int. J. Control, Vol. 75, No. 13, pp. 1012–1031.
  • 51. Zhang Y. (2007): Active fault-tolerant control systems: integration of fault diagnosis and reconfigurable control, In: Fault Diagnosis and Fault Tolerant Control. (Korbicz J., Patan K. and Kowal M., Eds.), Warszawa: Akademicka Oficyna Wydawnicza EXIT, pp. 21–41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0037-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.