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Summary 

The paper deals with the problems of robust fault detection using soft computing techniques, 

particularly neural networks (Group Method of Data Handling, GMDH), neuro-fuzzy networks 

(Takagi-Sugeno (T-S) model) and genetic programming. The model-based approach to Fault 

Detection and Isolation (FDI) is considered. The main objective is to show how to employ the 

bounded-error approach to determine the uncertainty defined as a confidence range for the model 

output, the adaptive thresholds can be defined. Finally, the presented approaches are tested on  

a servoactuator being an FDI benchmark in the DAMADICS project. 

Keywords: fault detection, robustness, adaptive threshold, neural networks, neuro-fuzzy networks,

genetic programming.

SZTUCZNA INTELIGENCJAW DIAGNOSTYCE TECHNICZNEJ

Streszczenie

W artykule rozpatruje si  problemy odpornej detekcji uszkodze  z wykorzystaniem technik 

oblicze  inteligentnych, a w szczególno ci sieci neuronowych (Group Method of Data Handling, 

GMDH), sieci neuronowo-rozmytych (model Takagi-Sugeno) oraz programowania genetycznego. 

Rozpatruje si  uk ad detekcji i lokalizacji uszkodze  z modelem. G ównym celem jest pokazanie 

jak zastosowa  metod  ograniczonego b du do wyznaczenia niepewno ci modeli neuronowych  

i rozmytych. Pokazano, e korzystaj c z wyznaczonych niepewnych modeli oblicze

inteligentnych zdefiniowanych w postaci przedzia ów ufno ci dla wyj cia modelu mo na

zdefiniowa  adaptacyjny próg decyzyjny. W ostatniej cz ci efektywno  rozpatrywanych podej

ilustrowana jest na przyk adzie uk adu diagnostyki inteligentnego urz dzenia si ownik-ustawnik-

zawór z projektu DAMADICS. 

S owa kluczowe: detekcja uszkodze , odporno , próg adaptacyjny, sieci neuronowe,

sieci neuronowo-rozmyte, programowanie genetyczne. 
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1. INTRODUCTION 

The reliability, safe and availability of 

engineering systems and machines play an important 

role during their operation use. It is important 

especially nowadays, when industrial installations 

and control algorithms are becoming more and more 

sophisticated, and economics pressure to reduce the 

costs. An early detection of faults can help avoid the 

system shutdown or breakdown. A system that 

includes the capacity of detecting, isolating, 

identificating or classifying faults is called a fault 

detection and isolation system. In automatic control 

systems, defects may occur in sensors, actuators 

and/or components of the controlled process. Such 

faults appeared in a component may develop into 

failures of the whole systems and this effect can be 

easily amplified by the closed loop. Therefore, fault 

tolerant control systems has gained more and more 

importance in the last decade [1, 23]. The toleranece 

to faults can be achived by different strategies (see 

the excellent overview paper [51]), but the most 

important and difficult problem is early diagnosis of 

faults. Therefore, fault diagnosis has become an 

important issue in modern control theory and 

practice.

During the last two and half decades, a huge 

amount of research has been conducted in FDI and  

a great variety of methods have been proposed. The 

core of modern diagnosis systems is the so-called 

model-based approach [11, 18, 19, 27, 40], in which 
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either analytical and/or soft computing models are 

applied [15, 44]. Unfortunately, the analytical 

model-based approach is usually restricted to 

simpler systems described by linear models. When 

there are no mathematical models of the diagnosed 

system or the complexity of the dynamic model 

increases and the task of modeling is hard, an 

analytical model cannot be applied in the fault 

diagnosis system nor give satisfactory results. 

Therefore many efforts are made to use knowledge-

based or qualitative or data-based models [3, 16, 41, 

43]. They represent system behaviour in terms of 

heuristic or qualitative knowledge [22, 32]. The 

relationship between inputs and outputs may be 

described by a rule base or a set of parameters that 

have to be determined during an identification stage 

based on the learning data set. In this case databased 

models, such as neural networks [15, 24], fuzzy sets 

[20, 28, 31], the evolutionary algorithms [37, 50] or 

their combination [3, 43], can be considered.  

Irrespective of the modelling method used 

(analytical or soft computing), there is always the 

problem of model uncertainty, i.e., the model-reality 

mismatch. Thus, the better model used to represent 

system behaviour, the better chance of improving 

the reliability and performance in diagnosing faults. 

Indeed, disturbances as well as model uncertainty 

are inevitable in industrial systems [42], and hence 

there exists a pressure creating the need for 

robustness in fault diagnosis systems [5]. This 

robustness requirement is usually achieved at the 

fault detection stage, i.e., the problem is to develop 

residual generators which should be insensitive (as 

far as possible) to model uncertainty and real 

disturbances acting on a system while remaining 

sensitive to faults. The most common approach to 

robust fault diagnosis is to use robust observers [5, 

7, 10]. 

The main objective of this survey paper is to 

present recent developments in modern fault 

diagnosis with neural networks, neuro-fuzzy 

networks and genetic programming. In particular, 

the paper is organised as follows. Section 2 outlines 

the problem of model-based fault diagnosis. The 

problem of genetic programming in modelling in 

Section 3 is considered. Section 4 presents neural 

network-based approaches that can be used to settle 

the fault diagnosis problem when the mathematical 

state-space model is not available. The Neuro-Fuzzy 

(NF) structure optimization problem in Section 5 is 

considered. The so-called Bounded Error Approach 

(BEA) is applied for description of soft computing 

models uncertainty, i.e. for GMDH neural network 

and T-S fuzzy model. The final section presents  

a comprehensive study regarding the application of 

the approaches considered to the DAMADICS 

benchmark problem. 

2. MODEL-BASED FAULT DIAGNOSIS 

The basic idea of the model-based approach to 

FDI is to compare the behaviour of the actual system 

with that of a functional system model. The 

traditional approach is to use analytical models and 

to check the model outputs for consistency with the 

measured outputs of the actual system. In general, 

the FDI task is accomplished by a two-step 

procedure, which consists of residual generation and 

evaluation.

In other words, three phases are distinguished in 

the process diagnosis [11, 18, 40] – detection, 

isolation and identification. The task of detection is 

to infer the occurrence of faults from residuals, and 

that of isolation – to define their location and time. 

Then the task of identification is to define the type, 

size and case of faults. 

Note that the core of model-based FDI is  

a process model which has to be accurate. 

Otherwise, false alarms occur that falsify the results 

and make the FDI system useless. Residual 

evaluation is a logical decision-making process 

which transforms quantitative knowledge (residuals) 

into qualitative statements of the yes or no type.

The analytical redundancy of measurement line 

exists when an additional value of process variable 

is obtained using mathematical model that connects 

the calculated variables with other measured signals. 

Analytical redundancy is used for fault detection 

where the analytical model of diagnosed 

systemismost important part. 

Among known mathematical models a special 

role belongs to state space equations that are applied 

for designing of state observers [17]. A common 

disadvantage of analytical approaches to the FDI 

system is the fact that a precise mathematical model 

of the diagnosed process is required. An alternative 

solution can be obtained using soft computing 

techniques, i.e., artificial neural networks, fuzzy 

logic, expert systems and evolutionary algorithms 

[3, 48] or their combination as neuro-fuzzy networks 

[20, 43]. To apply soft computing modelling, 

empirical data, principles and rules which describe 

the diagnosed process are required [43]. 

Below we focus on the problem of designing 

GMDH networks and Takagi-Sugeno NF systems as 

well as describing their uncertainty. Knowing such 

soft computing models’ structure and possessing the 

knowledge regarding their uncertainty it is possible 

to design robust detection schemes by defining 

adaptive thresholds. 
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3. GENETIC PROGRAMMING 

INMODELLING

Although there are many techniques for 

constructing non-analytical models, in one way or 

another, they finally boil down to several global 

optimization problems, like searching for an optimal 

model structure, the allocation of model parameters 

etc. They are nonlinear, multi-modal, usually multi-

objective, so that conventional “local” optimization 

methods are insufficient to solve them. In recent 

years, direct search techniques, which are problem-

independent, have been widely used in optimization. 

Unlike calculus-based methods (gradient descent, 

etc.), direct search algorithms do not require the use 

of derivatives. Gradient-descent methods work well 

when the objective surface is relatively smooth, with 

few local minima. However, realworld data are often 

multimodal and contaminated by noise which can 

further distort the objective surface. 

Evolutionary Algorithms (EAs) are a broad class 

of stochastic optimization algorithms inspired by 

some biological processes which allow populations 

of organisms to adapt to their surrounding 

environment [33, 37]. Genetic Programming (GP) 

[30] is an extension of EAs. 

3.1. Input-output representation of the system

via GP 

The set of possible candidate models from which 

the system model will be obtained constitutes an 

important preliminary task in any system 

identification procedure [13, 46]. 

Knowing that the diagnosed system exhibits 

nonlinear characteristics, a choice of the nonlinear 

model set must be made. In this section, an NARX 

(Nonlinear AutoRegresive with eXogenous variable)

model was selected as the foundation for 

identification methodology. Let a Multi-Input and 

Multi-Output (MIMO) NARX model has the 

following form: 
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Thus the system output is given by 

kkk yy ˆ  (2) 

where k consists of a structural deterministic error, 

caused by the model-reality mismatch, and the 

measurement noise k. The problem is to determine 

an unknown function g( ) = (g1, ..., gm) and to 

estimate the corresponding parameters vector  

= ( 1, ..., m).

One possible solution to this problem is the 

genetic programming approach. A tree is the main 

ingredient underlying the GP algorithm. In order to 

adapt GP to system identification it is necessary to 

represent the model (1) as a tree, or a set of trees 

[30]. The language of the trees in GP is formed by 

the user-defined function F set and the terminal  

T set, which form the nodes of the trees. 

The functions should be chosen so that they are  

a priori useful in solving the problem, i.e., any 

knowledge concerning the system under 

consideration should be included in the function set. 

This function set is very important and should be 

universal enough to be capable of representing  

a wide range of nonlinear systems. The terminals are 

usually variables or constants. Moreover, a tree 

representation can be extended by the so-called node

gains. A node gain is a numerical parameter 

associated with the node, which multiplies its output 

value.

One of the best known criteria which can be 

employed to select the model structure and to 

estimate its parameters is the Akaike Information 

Criterion (AIC) [46], where the following quality 

index is minimized:  

i
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where:
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T
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i
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detln , (4) 

and i

i

i MJiminargˆ  are the obtained using 

the identification data set of nT pairs of input/output 

measurements. The GP algorithm was successfully 

applied to identify the input-output model of the 

evaporation station at the Lublin Sugar Factor S. A. 

(Poland) [6]. Figure 1 illustrates the obtained results 

[50]. 

Fig. 1. System (solid line) and model (dashed line) 

output for the identification (left) and validation 

(right) data sets. 

4. NEURAL NETWORKS IN FAULT 

DETECTION

For the model-based approach [18, 40], the 

neural network replaces the analytical model that 

describes the process under the normal operating 

conditions [15, 43]. First, the network has to be 

trained to settle this task. Learning data can be 

collected directly from the process, if possible, or 

from a simulation model that should be as realistic 



DIAGNOSTYKA’ 2(46)/2008 

KORBICZ, Artificial Intelligence In Technical Diagnostics

10

as possible. The latter possibility is of special 

interest for data acquisition in different faulty 

situations. This is especially important for the task of 

testing the residual generator because such data are 

not generally available from the real process. The 

training process can be carried out off-line or on-line 

(it depends on the availability of data) [9, 38]. 

The possibility to train a network on-line is very 

attractive, especially in the case of adapting a neural 

model to mutable environment or time-varying 

systems. After finishing the training, a neural 

network is ready for on-line residual generation. In 

order to be able to capture the dynamic behaviour of 

the system, the neural network should have dynamic 

properties [8, 39], e.g., it should be a recurrent 

network.

Residual evaluation is a decision-making process 

that transforms quantitative knowledge into 

qualitative Yes or No statements. It can also be 

perceived as a classification problem. The task is to 

match each pattern of the symptom vector with one 

of the pre-assigned classes of faults and the fault-

free case. This process may be highly facilitated 

with intelligent decision making. To perform 

residual evaluation, neural networks can be applied, 

e.g., feed-forward networks or selforganizing maps 

[9, 14, 25]. 

4.1. Robust GMDH neural networks 

A successful application of the ANNs to the 

system identification and fault diagnosis tasks [24] 

depends on a proper selection of the neural network 

architecture. In the case of the classical ANNs such 

as Multi-Layer Perceptron (MLP), the problem 

reduces to the selection of the number of layers and 

the number of neurons in a particular layer. If the 

obtained network does not satisfy prespecified 

requirements, then a new network structure is 

selected and parameter estimation is repeated once 

again. The determination of the appropriate structure 

and parameters of the model in the presented way is 

a complex task. Furthermore, an arbitrary selection 

of the ANN structure can be a source of model 

uncertainty. Thus, it seems desirable to have a tool 

which can be employed for automatic selection of 

the ANN structure, based only on the measured data. 

To overcome this problem, GMDH neural networks 

[12, 36] have been proposed. The synthesis process 

of the GMDH model is based on iterative processing 

of a sequence of operations. This process leads to 

the evolution of the resulting model structure in such 

a way as to obtain the best quality approximation of 

the identified system. Thus, the task of designing  

a neural network is defined in such a way so as to 

obtain a model with a small uncertainty. 

The idea of the GMDH approach relies on 

replacing the complex neural model by the set of 

hierarchically connected neurons. The behaviour of 

each neuron should reflect the behaviour of the 

system being considered. It follows from the rule of 

the GMDH algorithm that the parameters of each 

neuron are estimated in such a way that their output 

signals are the best approximation of the real system 

output. In this situation, the neuron should have the 

ability to represent the dynamics. One way out of 

this problem is to use dynamic neurons [8, 21, 39]. 

Dynamics in these neurons are realised by 

introducing a linear dynamic system – an IIR filter. 

The process of GMDH network synthesis leads to 

the evolution of the resulting model structure in such 

a way as to obtain the best quality approximation of 

the real system [49]. 

To obtain the final structure of the network, all 

unnecessary neurons are removed, leaving only 

those which are relevant to the computation of the 

model output. The procedure of removing the 

unnecessary neurons is the last stage of the synthesis 

of the GMDH neural network. 

4.2. Confidence estimation of GMDH neural 

networks

Even though the application of the GMDH 

approach to model structure selection can improve 

the quality of the model, the resulting structure is not 

the same as that of the system. It can be shown [35] 

that the application of the classical evaluation 

criteria such as the Akaike Information Criterion 

(AIC) and the Final Prediction Error (FPE) [12] can 

lead to the selection of inappropriate neurons and, 

consequently, to unnecessary structural errors. 

Apart from the model structure selection stage, 

inaccuracy in parameter estimates also contributes to 

modelling uncertainty. Indeed, while applying the 

leastsquare method to parameter estimation of 

neurons, a set of restrictive assumptions has to be 

satisfied [35]. An effective remedy to such  

a challenging problem is to use the bounded error 

approach [34]. Let us consider the following system: 

k

T

kk ry (5)

where rk stands the regressor vector, n
R  denotes 

the parameter vector, and k represents the 

difference between the original system and the 

model. 

The problem is to obtain the parameter estimate 

vector ˆ , as well as the associated parameter 

uncertainty required to design robust fault detection 

system. The knowledge regarding the set of 

admissible parameter values allows obtaining the 

confidence region of the model output which 

satisfies
M

kk

m

k yyy ~~
(6)

where m

ky~  and M

ky~  are the minimum and maximum 

admissible values of the model output that are 

consistent with the input-output measurements of the 

system. 

It is assumed that k consists of a structural 

deterministic error caused by the model-reality 

mismatch, and the stochastic error caused by the 

measurement noise is bounded as follows: 
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M
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m
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(7)

where the bounds 
m

k and M

k

m

k

M

k
 can be 

estimated [49]. 

The idea underlying the bounded-error approach 

is to obtain a feasible parameter set P [34] that is 

consistent with the input-output measurements used 

for parameter estimation. The resulting P is 

described by a polytope defined by a set of vertices 

V. Thus, the problem of determining the model 

output uncertainty can be solved as follows: 
M

k

T

k

T

k

m

k

T

k rrr (8)

were
T

k
V

M

k

T

k
V

m

k rr maxarg,minarg (9)

As has been mentioned, the neurons in the l-th

(l > 1) layer are fed with the outputs of the neurons 

from the (l 1)-th layer. In order to modify the 

abovepresented approach for the uncertain regressor 

case, let us denote an unknown ”true” value of the 

regressor rn,k by a difference between the measured 

value of the regressor rk and the error in the regressor 

k:

kkkn err ,
(10)

where it is assumed that the error ek is bounded as: 

p

M

kiki

m

ki nieee ,,1,,,,
(11)

Using (5) and substituting (10) into (11), one can 

define the space containing the parameter estimates: 
T

k

M

k

T

kk

T

k

m

k erye  (12)

which makes it possible to adapt the above-

described technique to the error-in-regressor case 

[49]. 

The proposed modification of the BEA makes it 

possible to estimate the parameter vectors of the 

neurons from the l-th, l > 1 layers. Finally, it can be 

shown that the model output uncertainty has the 

following form: 
M

k

T

n

m

k yry ~~  (13) 

In order to adapt the presented approach to 

parameter estimation of non-linear neurons with an 

activation function ( ), it is necessary to transform 

the relation: 
M

k

T

kk

m

k ry  (14) 

using
1

, and hence: 

m

kk

T

k

M

kk yry 11 . (15) 

Knowing the model structure and possessing the 

knowledge regarding its uncertainty, it is possible to 

design a robust fault detection scheme with an 

adaptive threshold (Fig. 2). 

Fig. 2. Illustration of the concept of the adaptive 

threshold

The model output uncertainty interval, calculated 

with the application of the GMDH model, should 

contain the real system response in the fault-free 

mode. Therefore, the system output should satisfy: 
M

k

M

kk

m

k

m

k yyy ~~  (16) 

This means that robust fault detection boils down 

to checking if the output of the systemsatisfies (16). 

Thus, when (16) is violated, then a fault symptom 

occurs.

5. NEURO-FUZZY NETWORKS IN FAULT 

DETECTION

The procedure of neuro-fuzzy network design 

consists of the structure selection stage and the 

parameter estimation stage [26, 44, 45]. The 

pessimistic scenario assumes the construction of the 

neuro-fuzzy network only on the basis of the 

available measurements. The main problem is to 

obtain the required accuracy and transparency of the 

rule base in such a situation. A lot of different 

methods have already been developed both for 

structure selection and parameter estimation of the 

neuro-fuzzy network, but there is a demand for 

better, more effective algorithms, and active 

research is still conducted in this area. 

Takagi-Sugeno neuro-fuzzy networks can be 

viewed as multi-model systems which consist of 

some rules, and each rule defines a single model as 

the consequent of the rule [28, 29, 44]. The global 

neuro-fuzzy system is a set of Nr partial models, 

where Nr determines the number of fuzzy rules. The 

output of the global system is calculated as a mixture 

of partial model outputs. The rule fulfillment is 

determined by fuzzy sets. In order to ensure the 

desired accuracy of the neurofuzzy system, the 

membership functions of fuzzy sets must be placed 

properly in the input space, the number of rules must 

be appropriate and the parameters of partial models 

must be chosen to minimize the defined error. 

5.1. Robust neuro-fuzzy networks 

The application of neuro-fuzzy networks in 

diagnostic areas [3, 4] creates a demand for suitable 

design procedures which would take into account the 
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specificity of the fault diagnosis task. An important 

problem from the diagnostic point of view is 

residual confidence interval minimization because it 

makes it possible to detect a fault appropriately 

early. It has to be stressed that the value of the 

confidence interval for residuals depends directly on 

the uncertainty of the model which is used to 

generate the residuals. If the confidence interval is 

not consistent with model uncertainty, the fault 

detection system can trigger off a lot of false alarms. 

It is obvious in such a situation that model 

uncertainty has to be considered in fault detection 

threshold calculations [5, 47, 48]. It is also important 

to minimize model uncertainty in order to obtain  

a reliable fault detection system that would be able 

to detect a fault fast and at an early stage. So special 

procedures for neuro-fuzzy model design must be 

developed.

To overcome the problem, an alternative 

approach in the form of the BEA method [34] can be 

applied to tune the parameters of the Takagi-Sugeno 

neuro-fuzzy network and to calculate the admissible 

set of parameters and the confidence interval for the 

network output. The method requires only the 

information about the range of the disturbances 

which corrupt measurements. The application of the 

BEA algorithm for computing the confidence 

interval of the Takagi-Sugeno fuzzy model output 

requires to establish some assumptions in order to 

view the model in the form of an Linear in 

Parameter (LP) system [28, 29]. The main 

assumption based on the fact that the parameters of 

the membership functions of the fuzzy sets are 

known. Appropriate selection of the values of these 

parameters has an essential influence on the 

uncertainty of the whole fuzzy model. Wrong values 

of these parameters can significantly increase model 

uncertainty, thus the model can be unsuitable for 

diagnostic tasks. In order to present the BEA 

approach for estimating the parameters of the 

determining dynamic T-S network, let us consider 

the following model: 
n

i

kikik yy
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,, ,  (17) 

where yi,k is the output od the i-th rule and 
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The model described by the equation (17) can be 

viewed in the form of an LP system: 
T
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if the parameters of the fuzzy sets are treated like 

constant values. Here k

iz  denotes the input vector 

containing the delayed inputs 
k

iu of the local models 

and the delayed output 
k

iy  of the local models, i.e., 
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error is given by the following formulae: 

.M
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m
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thus the admissible set of parameters for N data 

points is given by the following expression: 

NkyxyRP m

k

T

k

M

k

n ,1,'' (22)

Each point inside the set P defines the vector of 

model parameters and all sets of parameters 

determine the group of models consistent with the 

measurements and bounds. This means that, instead 

of one model, a set of models with different 

parameters is given and the output signal is 

represented in the form of an interval which contains 

all possible model responses. Real applications 

usually require a single output value, thus one set of 

parameters must be chosen. The most common 

approach chooses the geometrical center of the area 

P as the set of parameters that is used to calculate the 

output of the model. This sample procedure is shown 

in Fig. 3. If the maximum and minimum values of 

the parameters are known: 

,minarg i
P

m

i
 (23) 

,maxarg i
P

M

i
 (24) 

the estimates of the parameters can be computed 

using the following formula: 

Ni
M

i

m

i
i ,,1,

2
 (25)

Fig. 3. Sample set of parameters P

The minimum and maximum values for the 

following parameters are determined using the linear 

programming technique [34]. The feasible set of 

parameters is used also to compute the confidence 

interval for the output of the system: 
MM

k

T

kk

mm

k

T

k xyx '
, (26) 

were
T

k
W

M

k xmaxarg  (27) 

T

k
W

m

k xminarg  (28) 



DIAGNOSTYKA’ 2(46)/2008 

KORBICZ, Artificial Intelligence In Technical Diagnostics

13

The confidence interval can be directly applied 

to calculate the adaptive threshold for the residual 

signal:

kkk yyr '
. (29)

Finally, the adaptive threshold is described by 

the following inequalities: 

k

M

k

M

k

T

kkrk

mm

k

T

k yxeyx ,
 (30)

Unfortunately, the computations required to 

determine all verticesWof the convex polyhedron  

P are so time and memory consuming that it is hard 

to employ the classical BEA algorithm for 

complicated models. In this case the methods that 

approximate the actual set P by the area which has  

a simplified shape should be employed [34]. One of 

the proposed solution is the Outer Bounding 

Ellipsoid (OBE) method which has been applied to 

fault detection in a DC engine [29]. 

6. NEURO-FUZZY-BASED FAULT 

DETECTION OF AN INTELLIGENT 

ACTUATOR

The scheme of the actuator with an intelligent 

positioner is given in Fig. 4. Such actuator has been 

investigated by international research group during 

the realization of the so-called DAMADICS [6] 

project. In the Fig. 6 the following notations are 

used: V1, V2 and V3 are cut-off valves, ACQ is a data 

acquisition unit, CPU is a positioner central 

processing unit, E/P is an electro-pneumatic 

transducer, and DT, PT and FT denote displacement, 

pressure and volume flow tranducers, respectively. 

For remote on-line diagnostics, the following 

measured variables are accessible: the flow rate of 

juice after the control valve (F), the actuator’s rod 

displacement (X), the input setpoint (CV), juice 

temperature at the input of the control valve (T1),

and juice pressures at the input and outlet of the 

control valve, respectively (P1 and P2).

Fig. 4. Scheme of the intelligent actuator 

Applying the method for structure generation of 

NF models [28, 29] and the results presented in 

Subsection 4.1, two NF models can be defined. The 

obtained structures are described in Table 1. 

Table 1. Neuro-fuzzy models 
quantity fF fX

global inputs X CV

local inputs X, P1, P2, T1 CV , P1, P2, T1

no. of rules 7 3 

The parametres of fuzzy sets were estimated 

from the results obtained during structure generation 

and the parameters of the consequents were 

estimated using the OBE algorithm. 

The first step of the experimental study was to 

present the modelling abilities of the obtained NF 

models and, additionaly, their system output 

uncertainty. Figure 5 presents the modelling abilities 

of the obtained model along with corresponding 

system output bounds. At the time Tf = 250 the big 

fault (the valve was blocked) occured. 

From Fig. 6, which shows the residual and its 

bounds given by the adaptive threshold, follows that 

this fault is detected very fast, with a small delay, 

approximately 5 units. 

The developed fault detection scheme with NF 

models using the available data containing 44 faulty 

scenarios generated by the actuar simulator [6] was 

tested as well. 

Table 2. Fault detection results
(S-small, M-medium, B-big, I-incipient)

No. Description S M B I 

f1

f2

f3

f4

f5

f6

f7

Control valve faults 
Valve clogging 

Sedimentation 

Seat erosion 

Bushing frictions 

External leakage 

Internal leakage 

Medium evaporation 

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

Y

f8

f9

f10

f11

Servo-motor faults 

Twisted piston rod 

Housing

Diaphragm perforation 

Spring fault 

N

Y

N

Y

Y

Y

Y

N

Y

f12

f13

f14

f15

Positioner faults 

E/P transducer fault 

Rod displ. sensor fault 

Pressure sensor fault 

Feedback fault 

N

Y

N

N

Y

N

N

Y

N

Y

Y

f12

f13

f14

f15

External faults 
Pressure drop 

Unexpected pressure change

Opened bypass valves 

Flow rate sensor fault F 

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y
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Fig. 5. Model and system output with system  

output bounds (big fault) 

Fig. 6. Residual and adaptive threshold (big fault) 

The fault detection results obtained for all 

scenarios are shown in Table 2, where the following 

notations are introduced: Y indicates the fault 

detected using the designed NF models, N indicates 

the fault that was not detected by the designed NF 

models. 

From Table 2 it follows that most faults can be 

detected, however, there are a few faults that cannot. 

The reason for such a situation was that the system 

output bounds obtained by the OBE algorithm were 

too large and hence sensitivity to faults was not high 

enough. This means that it is necessary to employ  

a more accurate technique than the OBE algorithm. 

7. CONCLUSIONS 

From the view point of engineering, it is clear 

that providing fast and reliable fault detection and 

isolation is an integral part of control design, 

particularly as far as the control of complex 

industrial systems is considered. The main objective 

of this paper was to consider a robust model-based 

fault detection system applying soft computing 

models. Special attention was paid to the uncertainty 

of such models and their usefulness in fault 

diagnosis. In particular, uncertainties of GMDH 

neural networks and Takagi-Sugeno NF networks 

were considered. The proposed approach was based 

on the bounded-error approach, which is superior to 

the celebrated least-square method in many practical 

applications. It was shown that the defined 

confidence interval for the system output of the 

GMDH and T-S networks can be used to develop an 

adaptive threshold that permits robust fault 

detection. In the last part, an experimental study 

performed with the DAMADICS benchmark 

problem showed the effectiveness of such robust 

fault detection based on the uncertainty of neuro-

fuzzy models. 
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