PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Suche osiadanie zanieczyszczeń na podłożu i jego parametryzacja w modelach rozprzestrzeniania się zanieczyszczeń powietrza atmosferycznego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Dry deposition of air pollutants on the surface and its parametrization in the air pollution dispersion models
Języki publikacji
PL
Abstrakty
PL
Zaprezentowano metody opisu suchej depozycji zanieczyszczeń na podłożu w modelach rozprzestrzeniania się zanieczyszczeń powietrza atmosferycznego. Prezentację metod poprzedza opis zjawiska suchego osiadania zanieczyszczeń na podłożu i ogólna klasyfikacja modeli rozprzestrzeniania się zanieczyszczeń powietrza. Pierwsza z przedstawianych w artykule metod jest metodą najmniej skomplikowaną i znaną najdłużej. W tej metodzie opis suchej depozycji zanieczyszczeń na podłożu opiera się na pojedynczym parametrze - prędkości suchego osiadania zanieczyszczeń na podłożu. Wartość tego parametru jest najczęściej uzależniana od rodzaju zanieczyszczenia i rodzaju podłoża. Ta metoda parametryzacji może być stosowana we wszystkich rodzajach modeli rozprzestrzeniania się zanieczyszczeń powietrza. W dalszej kolejności w artykule opisano bardziej zaawansowane metody parametryzacji suchego osiadania zanieczyszczeń na podłożu, w tym metodę "dużego liścia". Metody te są stosowane przede wszystkim w modelach numerycznych teorii K. W tych metodach nie korzysta się ze stablicowanych wartości prędkości osiadania, lecz proces suchego osiadania zanieczyszczeń na podłożu jest modelowany z użyciem tzw. rezystancji. Rezystancja, inaczej opór transportu zanieczyszczeń, jest definiowana jako odwrotność prędkości osiadania. Przez analogię do oporu elektrycznego rezystancja suchego osiadania jest dzielona na elementy składowe (rezystancje składowe) i obliczana z formuł matematycznych. W przypadku cząstek aerozoli dodatkowo uwzględniana jest prędkość opadania.
EN
Atmospheric pollutants are removed from the atmosphere by dry and wet deposition. Wet deposition is the process, in which gases and aerosol particles are absorbed into atmospheric droplets and afterwards they are transported by the precipitation to the surface of Earth. Dry deposition is the process, in which pollutants are transported by air motions to the surface of the Earth and afterwards they are adsorbed or absorbed by the soil, plants, water and other materials covering the ground surface. Here it should be stressed that the terms "dry" and "wet" are not related to the surface of Earth but to the way, in which the pollutants are transported towards it. The dry deposition of gases and aerosol particles is a complex process as it is influenced by many factors such as: meteorological conditions, the type of the pollutant and its physical and chemical properties, the type of the surface and its characteristic. In this article the dry deposition parametrization methods used in the air pollution models are reviewed. Before the specific methods are presented the dry deposition process is described and the classification of the air quality models is given. The description of the dry deposition parametrization methods starts with the simple one, in which the single parameter called the dry deposition velocity is used. This method can be applied to any kind of the air pollution model. Next the more advanced methods of the dry deposition parametrization are described including the "Big leaf model". These methods are commonly applied in the numerical K-theory air quality models. In these methods the dry deposition of pollutants is modelled using the so-called resistances. The resistance is defined as the reverse of the dry deposition velocity. By analogy to the electrical resistance the dry deposition resistance is calculated as the sum of specific resistances. In case of the aerosol particles the settling velocity in addition is taken into account.
Rocznik
Strony
331--347
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Politechnika Warszawska, Instytut Systemów Inżynierii Środowiska
Bibliografia
  • [1] Weseley M.L., Hicks B.B., A review of the current status of knowledge in dry deposition, Atmospheric Environment 2000, 34, 2261-2282.
  • [2] Sehmel A.G., Particle and gas dry deposition. A review, Atmospheric Environment, 1998, 14, 983-1011.
  • [3] Sehmel A.G., Deposition and resuspension, (in:) Atmospheric science and power production, ed. D. Randerson, Technical Information Center, USA 1984.
  • [4] Seinfeld J.H., Pandis S.N., Atmospheric chemistry and physics, John Wiley and Sons, New York 1998.
  • [5] Smith R.l. et al., A regional estimation of pollutant gas deposition in the UK: model description, sensitivity analysis and outputs, Atmospheric Environment 2000, 34, 3757-3777.
  • [6] Monteith J.L., Principles of environmental physics, American Elsevier, New York 1973.
  • [7] Chamberlain A.C., Aspects of travel and deposition of aerosol and vapour clouds, Report 1261, Harwell, Berkshire, England 1953.
  • [8] Juda J., Chróściel S., Ochrona powietrza atmosferycznego, PWNT Warszawa 1974.
  • [9] Zanetti P., Air pollution modelling, Van Nostrand Reinhold, New York 1990.
  • [10] Nowicki M., Parametry empiryczne w modelach dyfuzji zanieczyszczeń w atmosferze, PZiTS Zeszyt Problemowy X, Warszawa 1985.
  • [11] McMahon T.A., Denison P.J., Review paper. Empirical Atmospheric deposition parameters - a survey., Atmospheric Environment 1978, 13, 571-585.
  • [12] Padro J. et al., An analysis of measurements and modelling of air-surface exchange of N 0 -N 0 2- 0 3 over grass, Atmospheric Environment 1998, 32, 1365-1375.
  • [13] Horvath L. et al., Estimation of dry deposition velocities of nitric oxide, sulphur dioxide and ozone by the gradient method above short vegetation during the tract campaign, Atmospheric Environment 1998, 32, 1317-1322.
  • [14] Andersen H.V., Measurement of ammonium concentration, flux and dry deposition velocities to a spruce forest 1991-1995, Atmospheric Environment 1998, 33, 1367-1383.
  • [15] Hall B. et al., Measurement and modelling of the dry deposition of peroxides, Atmospheric Environment 1999, 28, 1089-1094.
  • [16] Finkelstein P.L. et al., Ozone and sulphur dioxide dry deposition toforests: observations and model evaluation, Journal of Geophysical Research 2000, 105, 14365-15377.
  • [17] Kvasnak W., Experimental investigation of dust particle deposition in a turbulent channel flow, Journal of Aerosol Science 1993, 24, 795-815.
  • [18] Ruijgrok W. et al., The dry deposition of particulates to a forest canopy: a comparison of model and experimental results, Atmospheric Environment 1997, 31, 399-415.
  • [19] Kim E. et al.. Dry deposition of large, airborne particles onto a surrogate surface, Atmospheric Environment 2000, 34, 2387-2397.
  • [20] Markiewicz M.T., Parametryzacja procesów chemicznych w modelach rozprzestrzeniania się zanieczyszczeń powietrza atmosferycznego, Inżynieria i Ochrona Środowiska 2002, 3-4, 311-330.
  • [21] Markiewicz M., Przegląd modeli rozprzestrzeniania się zanieczyszczeń w powietrzu atmosferycznym, Prace Naukowe Politechniki Warszawskiej 1986, z. 21, 35-63.
  • [22] Chróściel S., Ochrona powietrza atmosferycznego, Wydawnictwa Naukowe Politechniki Warszawskiej, Warszawa 1980.
  • [23] Csandy G.T., Dispersal of dust particles from elevated sources. Australian Journal of Physics, 55, 8, 545-550.
  • [24] Overcamp T.J., A general Gaussian diffusion-deposition model for elevated point sources., Journal of Applied Meteorology 1976, 15, 1167-1171.
  • [25] Horst T. W., A review of Gaussian diffusion-deposition models, Materials from the Symposium on Potential Environmental and Health Effects of Atmospheric Sulphur Deposition, Gatlinburg, Tennesee, USA 1979.
  • [26] Szymczyk J. et al., Zastosowanie modelu REGSIM dla wybranego regionu Polski, Raport PR8- 7.2.3.3, Warszawa 1985.
  • [27] Chróściel S., Markiewicz M., Modelling dispersion of air pollution over the Cracov agglomeration., Materials International Conference on Tropical micro-meteorology and air pollution., Indian Institute of Technology, New Delhi 1988.
  • [28] Uliasz M., Lagrangian particle dispersion modelling in mesoscale applications, Materials from the Summer School, International Center of Teoretical Phyisics, Trieste 1994.
  • [29] Desiatof., ARCO: a legrangian particle model for the study of the atmospheric dispersion under complex conditions, Materials from the Summer School, International Center of Teoretical Phyisics, Trieste 1994.
  • [30] Simpson D., Long-period modelling of photochemical oxidants in Europe, Model calculations for July 1985, Atmospheric Environment 1991, 26A, 1609-1634.
  • [31] Peters L.K. et al., The current state and future directions of Eulerian models in simulating the tropospheric chemistry and transport of trace species: a review, Atmospheric Environment 1995, 22, 189.
  • [32] Jacobson M , Fundamentals of atmospheric modelling, Cambridge University Press, Cambridge 1999.
  • [33] Garland J.A., The dry deposition of sulphur dioxide to land and water surfaces, Proceedings of the Royal Society of London, London 1977, 245-268.
  • [34] Weseley M.L., Hicks B.B., Some factors that affect the deposition rates of sulphur dioxide and similar gases to vegetation, Journal of Air Pollution Control Association 1977, 27, 1110-1116.
  • [35] Fowler D., Unsworth M.H., Turbulent transfer of sulphur dioxide to wheat crop, Quaterly Journal of the Royal Meteorological Society 1979, 105, 767-783.
  • [36] Baldocchi D.D. et al., Measuring biosphere-atmosphere exchanges of biologically related gases with the micrometeorological methods, Ecology 1988, 69,1331-1340.
  • [37] Hicks B.B. et al., A preliminary multiply resistance routine for deriving dry deposition velocities from measured quantities, Water, Air and Soil Pollution 1987, 36, 311-330.
  • [38] Feliciano M.S. et al., Evaluation of S 0 2 dry deposition over short vegetation in Portugal, Atmospheric Environment 2001, 35, 3633-3643.
  • [39] Hicks B.B., Matt D.R., Combining biology, chemistry and meteorology in modelling and measuring dry deposition, Journal of Atmospheric Chemistry 1988, 6, 117-131.
  • [40] Meyers T.P., Hicks B.B., Dry deposition of 0 3, S 0 2 and H N 03 to different vegetation in the same exposure environment, Environmental Pollution 1988, 53, 13-25.
  • [41] Weseley M.L. et al., Measurements and parametrization of particulate sulphur deposition over grass, Journal of Geophysical Research 1985, 90, 2131-2143.
  • [42] Erisman J.W., Baldocchi D., Modelling dry deposition ofS 0 2, Tellus 1994, 46B, 159-171.
  • [43] Scire J.S. et al., Model formulation and user guide for CALPUFF dispersion model., Report Sigma Research Corporation, Report No. A025-2, Concord, MA 1990.
  • [44] Massman W.J., Partitioning ozone fluxes to sparse grass and soil and the inferred resistances to dry deposition, Atmospheric Environment 1993, 27A, 167-174.
  • [45] Russell A.A. et al., Mathematical modelling and control of dry deposition flux of nitrogen-containing air pollution, Environmental Science and Technology 1993, 27, 2772-2782.
  • [46] Zhang L. et al., Modelling gaseous deposition in AURAMS: a unified regional air-quality modelling system, Atmospheric Environment 2001, 36, 537-560.
  • [47] Zhang L. et al., A comparison of models to estimate in-canopy photosynthetically active radiation and their influence on canopy stomata resistance, Atmospheric Environment 2001, 35, 4463-4470.
  • [48] Zhang L. et al., A size segregated particle dry deposition scheme for an atmospheric aerosol module, Atmospheric Environment 2001, 35, 549-560.
  • [49] Zhang L. et al., A multilayer model vs single layer models and observed 0 3 dry deposition velocities, Atmospheric Environment 1996, 30, 339-345.
  • [50] Campbell J.S., An introduction to environmental biophysics, Springer, Heidelberg 1977.
  • [51] Baldocchi D.D. et al., A canopy resistance model for gaseous deposition to vegetation surfaces, Atmospheric Environment 1987, 21, 91-101.
  • [52] Weseley M.L., Parametrizations of surface resistance to gaseous dry deposition in regional scale numerical models, Atmos. Env. 1989, 23, 1293-1304.
  • [53] Wamsley J.L., Weseley M.L., Modification of coded parametrization of surface resistances to gaseous dry deposition, Atmospheric Environment 1996, 30, 1181-1188.
  • [54] Pleim J. et al., ADOM/TADAP Model development program. The dry deposition module, v.4. ERT Document No. PB980-520, Environmental Research Technology Incorporation, Concord, MA 1984.
  • [55] Erisman J.W. et al., Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone, Atmospheric Environment 1994, 30, 1247-1254.
  • [56] Baldocchi D.D., Meyers T., On using eco-physiological, micrometeorological and biochemical theory to evaluate carbon dioxide, water vapour and trace gas fluxes over vegetation: a perspective, Agricultural and Forest Meteorology 1998, 90, 1-25.
  • [57] Meyers T.P. et al., A multilayer model for inferring dry deposition using standard meteorological measurements, Journal of Geophysical Research 1998, 103, 22645-22661.
  • [58] Sellers P.J. et al., A revised land surface parametrization for atmospheric GCMS. Part I: model formulation, Journal of Climate 1996, 9, 676-705.
  • [59] Sutton M.A. et al., Development of resistance models to describe measurements of bi-directional ammonia surface - atmospheric exchange, Atmospheric Environment 1998, 32, 473-480.
  • [60] Flechard C.R. et al., A dynamic chemical model of bi-directional ammonia exchange between semi-natural vegetation and the atmosphere, Quarterly Journal of the Royal Meteorological Society 1999, 125,2611-2641.
  • [61] Brook J.R. et al., Description and evaluation of a model of deposition velocities for routine estimates of air pollutant dry deposition over North America. Part I: model development, Atmospheric Environment 1999, 33, 5037-5051.
  • [62] Brook J.R. et al., Description and evaluation of a model of deposition velocities for routine estimates of air pollutant dry deposition over North America. Part II: review of the past measurements and model results, Atmospheric Environment 1999, 33, 5053-5070.
  • [63] Venkatram A., Karamchandani P.K., Misra P.K., Testing a comprehensive acid deposition model, Atmospheric Environment 1998, 22, 737-747.
  • [64] Carmichael G.R. et al., The STEM II regional scale acid deposition and photochemical oxidant model. Part 1 An overview of model development and applications, Atmospheric Environment 1991,25,2077-2090.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0026-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.