PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametryzacja procesów chemicznych w modelach rozprzestrzeniania się zanieczyszczeń powietrza atmosferycznego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Parametrization of chemical processes in the air pollution dispersion models
Języki publikacji
PL
Abstrakty
PL
Zaprezentowano metody opisu przemian chemicznych zanieczyszczeń w modelach rozprzestrzeniania się zanieczyszczeń powietrza atmosferycznego. Opis metod poprzedza ogólna klasyfikacja modeli rozprzestrzeniania się zanieczyszczeń powietrza. Pierwsza z przedstawionych metod jest metodą najprostszą spośród wszystkich znanych i jednocześnie najstarszą. W tej metodzie opis procesów chemicznych zachodzących w atmosferze bazuje na pojedynczym parametrze, którym najczęściej jest czas połowicznej przemiany. Uproszczoną metodę parametryzacji przemian chemicznych można wykorzystywać we wszystkich modelach rozprzestrzeniania się zanieczyszczeń w atmosferze, jakkolwiek obecnie metodę tę stosuje się prawie wyłącznie w modelach gaussowskich oraz modelach trajektoryjnych cząstek. W metodzie drugiej, bardziej dokładnej, modelowanie przemian chemicznych zanieczyszczeń w atmosferze wymaga zastosowania schematów chemicznych. Metoda ta jest stosowana powszechnie w modelach pudełkowych i numerycznych modelach teorii K. Śledząc w czasie zmianę opisu przemian chemicznych z użyciem schematów chemicznych w numerycznych modelach rozprzestrzeniania się zanieczyszczeń teorii K w atmosferze, można je podzielić na trzy klasy 'wiekowe'. W tzw. pierwszej generacji uwzględnia się głównie przemiany chemiczne w fazie gazowej. W modelach zaliczanych do modeli drugiej generacji przemiany chemiczne zanieczyszczeń w fazach gazowej i wodnej są opisywane przy zastosowaniu oddzielnych modułów. W obecnie opracowywanych, najbardziej rozbudowanych systemach modelowania zanieczyszczeń w atmosferze w opisie procesów chemicznych uwzględniane są przemiany zachodzące w trzech fazach.
EN
Within the last twenty years the big progress was achieved in the atmospheric chemistry discipline. It is expected that this progress will be continued. Currently homogenous gas phase chemical reactions are known the best. The further examination is needed to get to know better the chemical reactions taking place in the liquid and solid phases as well as the heterogeneous reactions. In this article methods of description of the chemical processes in the air pollution models are described. Theory and application of these methods into different types of models are preceded by the classification of the air pollution models. As the chemical processes are complex their description in the models has to be simplified. In this article two basic types of methods of chemical processes parametrizations in the air quality models are distinguished. First the simple method based on the single parameter is given. For this purpose the half-life of pollutant is commonly used, which is defined as the period of time during which the pollutant concentration drops to the value equal half of the beginning concentration. This method can be applied to any kind of the air quality model. Next the more advanced method of parametrization of the chemical processes of atmospheric pollutants is described. In this method the chemical processes taking place in the atmosphere are modelled using the chemical module. This method is commonly used in the numerical air quality models particularly in K-theory models. Taking into account the complexity of chemical schemes used in the chemical modules the constant improvements are observed. In the oldest so-called first-generation K-theory models only the gas phase chemical reactions were considered. In the so-called second-generation K-theory models the two separate chemical modules describing the chemical transformations in the gas phase and liquid phase are present. Recently developed so-called third-generation K-theory models atmospheric chemical processes in all three phases are described.
Rocznik
Strony
311--330
Opis fizyczny
Bibliogr. 85 poz., tab.
Twórcy
  • Politechnika Warszawska, Instytut Systemów Inżynierii Środowiska
Bibliografia
  • [1] Markiewicz M., Przemiany chemiczne SO2 i NOx w troposferze, Inżynieria i Ochrona środowiska, w druku.
  • [2] Zanettii P., Air pollution modelling. Theories, computational models and available software, Van Nostrad Reinhold, New York 1990.
  • [3] Markiewicz M., Przegląd modeli rozprzestrzeniania się zanieczyszczeń w powietrzu atmosferycznym, Prace Naukowe Politechniki Warszawskiej, 1986, z. 21, 35-63.
  • [4] Juda J., Chruściel S., Ochrona powietrza atmosferycznego, WNT, Warszawa 1974.
  • [5] Chróściel S., Markiewicz M., Modelling dispersion of air pollution over Cracov agglomeration, Materials from the International Conference on Tropical micro-meteorology and air pollution, Institute of Technology, New Delhi 1988.
  • [6] Szymczyk J. et al., Zastosowanie modelu REGSIM dla wybranego regionu Polski, Raport PR8- 7.2.3.3, Warszawa 1985.
  • [7] Desiatof., ARCO: a legrangian particie model for the study of the atmospheric dispersion under complex conditions, Materials from the Summer School, International Center for Theoretical Physics, Italy, Trieste 1994.
  • [8] Uliasz M., Legrangian particle dispersion modelling in mesoscale applications, Materials from the Summer School, International Center for Theoretical Physics, Italy, Trieste 1994.
  • [9] Nowicki M., Parametry empiryczne w modelach dyfuzji zanieczyszczeń w atmosferze, PZiTS, Warszawa 1984.
  • [10] Seinfeld J.H., Atmospheric chemistry and physics of air pollution, John Wiley and Sons, New York 1986.
  • [11] Seinfeld J.H., Pandis S.N., Atmospheric Chemistry and Physics, Wiley and Sons, New York 1998.
  • [12] Finlayson B., Pitts J., Atmospheric chemistry. Fundamentals and experimental techniques, John Wiley and Sons, New York 1986.
  • [13] Zwoździak J. et al., Przemiany chemiczne zanieczyszczeń w atmosferze, Raport PWr, Raport PR8-07.02.01.05, Wrocław 1981.
  • [14] Meszaros E.E. et al., Sulphur dioxide - sulphate relationships in Budapest, Atmospheric Environment 1977, 11, 345.
  • [15] Breeding R.J. et al., Measurements of atmospheric pollutants in the St. Louis area, Atmospheric Environment 1976, 10, 181.
  • [16] Hevitt C.N., The atmospheric chemistry of sulphur and nitrogen in power station plumes, Atmospheric Environment 2001, 35, 1155-1170.
  • [17] Hegg D.A., Hobbs P.V., Measurements of gas to particle conversion in the plumes from five coal-fired electric power plants, Atmospheric Environment 1980, 14, 99-116.
  • [18] Szepesi D.J., Transformation of sulphur dioxide on local, regional and continental scale, Atmospheric Environment 1978, 12, 529-535.
  • [19] Me Mahon T., Dennison P.J., Empirical atmospheric deposition parameters - a survey, Atmospheric Environment 1979, 13, 571-585.
  • [20] McRae G.J. et al., Development of a second-generation mathematical model for urban air pollution. Part I: Model formulation, Atmospheric Environment 1982, 16, 679-696.
  • [21] Reynolds S.H. et al., Mathematical modelling of photochemical air pollution. Part I: Formulation of the model, Atmospheric Environment 1976, 7, 1033-1061.
  • [22] Anderson-Skold Y., Updating the chemical scheme for IVL photochemical trajectory model, 1VL Report В 1151.
  • [23] Jenkin M.E. et al., Constructing a detailed mechanism for use in troposhpheric chemistry models, Report AEA Technology, National Environmental Technology Center, Culham, England 1996.
  • [24] Dodge M.C., A comparison of three photochemical mechanisms used in atmospheric models, Atmospheric Environment 1998, 18, 311-312.
  • [25] Atkinson R. et al., An updated chemical mechanism for hydrocarbon/NOx/S02 photooxidation suitable for inclusion in atmospheric simulation models, Atmospheric Environment 1982, 16, 1341-1355.
  • [26] Niki H. et al., Mechanisms of smog reactions, Advanced Chemistry Series 1972, 113, 16-57.
  • [27] Lee P.C.S et al., Technical note. On the paralleization of a global climate-chemistry modeling system, Atmospheric Environment 1999, 33, 675-681.
  • [28] Martin M. et al., Atmospheric pollution transport: the paralleization of transport and chemistry code, Atmospheric Environment 1999, 33,1853-1860.
  • [29] Hough A.M., Reeves C.E., Photochemical oxidant formation and the effect of vehicle exhaust control in the UK. The results from the 20 different chemical mechanisms, Atmospheric Environment 1988, 22, 1121-1235.
  • [30] Leone J.A., Seinfeld J.H., Comparative analysis of chemical reaction mechanisms for photochemical smog, Atmospheric Environment 1985, 19, 437-464.
  • [31] Crassier V., Development of a reduced chemical scheme for use in mesoscale meteorological models, Atmospheric Environment 2000, 34, 2633-2644.
  • [32] Whitten G.Z. et al., The carbon-bond mechanism: a condensed kinetic mechanism for photochemical smog, Environmental Scientific Technology 1980, 18, 280-287.
  • [33] Gery M.W. et al., A photochemical mechanism for urban and regional scale computer modelling, Journal of Geophysical Research 1989, 94, 12925-12956.
  • [34] Stockwell W.R. et al., The second generation acid deposition model: chemical mechanism for regional and air quality modelling, Journal of Geophysical Research 1990, 95, 16343-16367.
  • [35] Lurman F.W. et al., A chemical mechanism for use in long-range transport/ acid deposition computer modelling, Journal of Geophysical Research 1986, 91, 10905-10936.
  • [36] Lurman F.W. et al., A surrogate species chemical reaction mechanism for urban scale air quality models. Volume 1 - Adaptation of the mechanism, Final Report. Atmospheric science research laboratory, Research Triangle Park, NC 1987.
  • [37] Makar R.A. et al., Gas-phase chemical mechanism compression strategies: treatment of reactants, Atmospheric Environment 1996, 30, 831-842.
  • [38] Heard A.C. et al., Mechanism reduction techniques applied to tropospheric chemistry, Atm. Env. 1998, 32, 1059-1073.
  • [39] Carslaw N. et al., Modelling OH, H 0 2 and R 02 in the marine boundary layer: Part 2 - Mechanism reduction and uncertainty analysis, Journal of Geophysical Research 1998, 103, 18917-18933.
  • [40] Fish D.J., The automatic generation of reduced mechanisms for tropospheric chemistry modelling, Atmospheric Environment 2000, 34, 1563-1574.
  • [41] Dodge M.C., Chemical oxidant mechanisms for air quality modelling: critical review, Atmospheric Environment 2000, 34, 2103-2130.
  • [42] Zlatew Z. et al., An Eulerian air pollution model for Europe with nonlinear chemistry, Journal of Atmospheric Chemistry 1992, 15, 1-37.
  • [43] Russell A., Dennis R., NARSTO critical review of photochemical models and modelling, Atmospheric Environment 2002, 34, 2283-2324.
  • [44] Venkatram A. et al., Testing a comprehensive acid deposition model, Atmospheric Environment 1988, 22, 737-747.
  • [45] Stockwell W.R. et al., A new mechanism for regional atmospheric chemistry modelling, Journal of Geophysical Research 1997, 22, 25847-26879.
  • [46] Molier D., Mauersberger G., An aqueous phase reaction mechanism. In Clouds: Models and mechanisms, EUROTRAC special publications, Germany, ISS Garnisch-Partenkirchen 1995, 77-93.
  • [47] Liu X.C. et al., The effects of clouds processes tropospheric chemistry: on improvement of the EURAD model with a coupled gaseous and aqueous chemical mechanism, Atmospheric Environment 1998, 31, 3119-3135.
  • [48] Simpson D. et al., Updating the chemical scheme for the EMEP MSC-W oxidant model: current status, Technical report 2/93, EMEP MSC-W, The Norwegian Meteorological Institute, Oslo 1993.
  • [49] Chameides W.L., Davis D.D., The free radical chemistry of a cloud droplets and its impact upon the composition of rain, Journal of Geophysical Research 1982, 87, 4863-4877.
  • [50] Jacob D.J., Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulphonate, Journal of Geophysical Research 1986, 91, 9807-9826.
  • [51] Carmichael G.R. et al., The STEM II regional scale acid deposition and photochemical oxidant model. Part I An overview of model development and applications, Atmospheric Environment 1991, 25, 2077-2090.
  • [52] Jacobson M.Z., Development and application of a new air pollution modelling system II Aerosol module structure and design, Atmospheric Environment 1997, 31, 131-144.
  • [53] Dunker A.M. et al., A comparison of chemical schemes used in atmospheric models, Atmospheric Environment 1984, 18, 311-321.
  • [54] Stockwell W.R., A homogenous gas phase mechanism for use in acid deposition model, Atmospheric Environment 1986, 20, 1615-1632.
  • [55] Hough A.M., An intercomparison mechanisms for the production of photochemical oxidants, Journal of Geophysical Research 1988, 93, 3789-3812.
  • [56] Derwent R.G., Evaluation of a number of chemical mechanisms for their application in models describing the formation of photochemical ozone in Europe, Atmospheric Environment 1990, 24A, 2615-2624.
  • [57] Millford J.B. et al., Use of sensitivity analysis to compare chemical schemes for air-quality modelling, Environmental Science and Technology 1992, 26, 1179-1189.
  • [58] Jeffries H.F., Tonnesen J., A comparison of two photochemical reaction mechanisms using mass balance and process analysis, Atmospheric Environment 1994, 28, 2991-3003.
  • [59] Olson J. et al., Results from the international panel on climate change photochemical model intercomparision (Photocomp), Journal of Geophysical Research 1997, 102, 5979-5991.
  • [60] Kuhn M. et al., Intercomparision of the gas-phase chemistry in several chemistry and transport models, Atm Env. 1998, 32, 693-709.
  • [61] Yang Y. et al., Uncertainties in incremental reactivities of volatile organic compounds, Env. Science and Technology 1995, 29, 1336-1345.
  • [62] Gao D. et al., First order sensitivity and uncertainty analysis for a regional-scale gas-phase chemical mechanism, Journal of Geophysical Research 1995, 100, 23153-23166.
  • [63] Jiang W. et al., Sensitivity of ozone concentrations to rate constants in a modified SAPRC90 chemical mechanism used for Canadian Lower Fraser Valley ozone studies, Atmospheric Environment 1997,31, 1195-1208.
  • [64] Markiewicz M., Stiff ODE solvers for use in atmospheric air quality models, Prace Naukowe Politechniki Warszawskiej 1999, z. 30, 35-63.
  • [65] Hesstvedt E. Hov O., Isaksen I., Quasi-steady-state-approximation in air pollution modelling: comparison of two numerical schemes for oxidant prediction, International Journal of Chemical Kinetics 1978, 10, 971-994.
  • [66] Sandu A. et al., Benchmarking stiff ODE solvers for atmospheric chemistry problems I: implicite versus explicit, Atmospheric Environment 1997, 31, 3151-3166.
  • [67] Sandu A. et al., Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers, Atmospheric Environment 1997, 31, 3459-3472.
  • [68] Dabdub D., Seinfeld J.H., Extrapolation techniques used in the solution of stiff ODEs associated with chemical kinetics of air quality models, Atmospheric Environment 1995, 29,403-410.
  • [69] Young T.R., Boris J.P., A numerical technique for solving stiff ODEs associated with the chemical kinetics of reactive flow problems, Journal of Physical Chemistry 1977, 81, 2424- -2427.
  • [70] Van Loon M., Numerical Methods in smog prediction, PhD thesis, CW1 Amsterdam 1996.
  • [71] Gong W., Cho H.R., A numerical scheme for the integration of the gas-phase chemical rate equation in three-dimensional atmospheric models, Atmospheric Environment 1993, 27A, 2147-2160.
  • [72] Verwer J.G. et al., A comparison of stiff ODE solvers for atmospheric chemistry problems, Atmospheric Environment 1996, 30,49-58.
  • [73] Hertel O. et al., Test of two numerical schemes for use in atmospheric transport-chemistry models, Atmospheric Environment 1993, 27A, 2591-2611.
  • [74] Hindmarsh A.C., ODEPACK: a systematised collection of ODE solvers, (in:) Scientific computing, ed. by R.C. Stepleman, North-Holland, Amsterdam 1983, 55-64.
  • [75] Hairer E., Wanner G., Solving Ordinary Differential Equations II. Stiff and Differential Algebraic Problems, Springer, Berlin 1991.
  • [76] Saylor R.D., Ford G.D., On the comparison of numerical methods for the integration of kinetic equations in atmospheric chemistry and transport models, Atmospheric Environment 1995, 29, 2585-2593.
  • [77] Jacobson M.Z., Turco R.P., SMGEAR: a sparse matrix, vectorized Gear code for atmospheric models, Atmospheric Environment 1994, 28, 273-284.
  • [78] Jacobson M.Z., Computation of global photochemistry with SMVGEAR II, Atmospheric Environment 1995, 18, 2541-2546.
  • [79] Odman M.T. et al., A comparison of fast chemical kinetic solvers for air quality modelling, Atmospheric Environment 1992,26A, 1783-1789.
  • [80] Peters L. et al., The current state and future direction of eulerian models in simulation the tropospheric chemistry and transport of trace species: A review, Atmospheric Environment 1995, 29, 189-222.
  • [81] Chang J.S. et al., A 3-D eulerian acid deposition model: physical concepts and formation, Journal of Geophysical Research 1987, 92, 14681-14700.
  • [82] Hansen D.A. et al., The quest for an advanced regional air quality model, Environmental Scientific and Technology 1994, 28, 71-77.
  • [83] Atkinson R., Atmospheric chemistry of VOCs and NOx, Atmospheric Environment 2000, 34, 2063-2101.
  • [84] Jacob J.D., Heterogeneous chemistry and tropospheric ozone, Atmospheric Environment, 2000, 34, 2131-2159.
  • [85] Jenkin M.E., Clemitshaw K.C., Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer, Atmospheric Environment 2000, 34, 2499-2527.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0026-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.