Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Powłoki wielowarstwowe Cr-CrN i CrN-TiC wytwarzane metodą łukowo-próżniową
Języki publikacji
Abstrakty
The issue of this paper is the testing of properties of multilayer coatings composed on the basis of chromium nitride, multilayer Cr-CrN coating and multilayer CrN-TiC coating manufactured by means of the arc-vacuum method on 4H13 steel foundation. The multilayer structure of the obtained coatings has been determined by means of scanning microscopy and spectral analysis of the chemical composition change in the depth function (GDOES). Besides, their hardness and Young module has been measured (NanoHardnessTester) and the adhesion has been tested by means of scratch-test (REVETEST). In the scratch-tests the load values of the intender determining the moment of cracks initiation and cohesion failure were determined. They define the moment of adhesion failures initiation and determine the moment of complete coating's removal from the foundation surface in the scratch area. Thanks to the testing, it was possible to define the influence of the multilayer structure on the mechanical properties of manufactured multilayer compositions and the mechanism of their devastation in the scratch test.
Przedmiotem artykułu są badania właściwości powłok wielowarstwowych skomponowanych na bazie azotku chromu, tj. powłoki wielowarstwowej Cr-CrN oraz powłoki wielowarstwowej CrN-TiC, wytworzonych metodą łukowo-próżniową na podłożu ze stali 4H13. Z wykorzystaniem mikroskopii skaningowej oraz spektralnej analizy zmian składu chemicznego w funkcji głębokości (GDOES) określono budowę wielowarstwową otrzymanych powłok, dokonano pomiarów ich twardości i modułu Younga (NanoHardnessTester) oraz zbadano adhezję metodą scratch-test (REVETEST). W testach zarysowania wyznaczono wartości obciążenia wgłębnika określające moment inicjowania pęknięć i zniszczeń kohezyjnych, określające moment inicjowania zniszczeń adhezyjnych oraz określające moment całkowitego usunięcia powłoki z powierzchni podłoża w obszarze zarysowania. Przeprowadzone badania pozwoliły określić wpływ budowy wielowarstwowej na właściwości mechaniczne wytworzonych kompozycji wielowarstwowych oraz mechanizm ich niszczenia w teście zarysowania.
Czasopismo
Rocznik
Tom
Strony
91--104
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
autor
autor
autor
- Institute for Sustainable Technologies - National Research Institute, Radom
Bibliografia
- 1. Burakowski T., Wierzchoń T.: Inżynieria powierzchni metali - podstawy, urządzenia, technologie. WNT, Warszawa, 1995 (in Polish).
- 2. Bell T.: Proc. of the conf. “Heat treatment and surface engineering”. London, UK, 1987.
- 3. Mazurkiewicz A., Smolik J., Walkowicz J.: Advances in manufacturing. Science and Technology, 2002, 26, 25.
- 4. Holleck H.: Designing advanced coatings for wear protection. Surface Engineering, 1991, 7, 2, 137.
- 5. Holleck H.: Designing advanced coatings for wear protection. Surface Engineering & Heat Treatment – Past, Present and Future. Edited by Morton P.H., London, 312.
- 6. Subramanian C., Strafford K.N.: Review of multicomponent and multilayer coatings for tribological applications. Wear, 1993, 165, 85.
- 7. Smolik J.: The parameters for determine of anti-abrasive multilayers durability. Proc. of 9th Intern. Conf. on Tools, Miscolc, Hungary, 1996, 69.
- 8. Smolik J., Zdunek K.: Anti-wear properties of TiC/Ti(CxN1-x)/TiN coating. Proc. of 11th Intern. Conf. on Surface Modification Technologies, Paris, France, 1997, 1001.
- 9. Smolik J., Walkowicz J.: The influence of interfaces between component layers on the multilayers sliding-wear-resistance. Le Vide: science, technique et applications, 1999, 291, 352.
- 10. Burakowski T.: Rozważania o synergizmie w inżynierii powierzchni. Wyd. Politechniki Radomskiej, 2004 (in Polish).
- 11. Holleck H.: Material selection for hard coatings. J. Vac. Sci. Technology, 1986, 6, 2661.
- 12. Holleck H.: Basic principles of specific applications of ceramic materials as protective layers. Surface and Coatings Technology, 1990, 43/44, 245.
- 13. Holleck H., Schier V.: Multilayer PVD coatings for wear protection. Surface and Coatings Technology, 1995, 76–77, 328.
- 14. Holleck H., Schulz H.: Advanced layer material constitution. Thin Solid Films, 1987, 153, 11.
- 15. Stallard J., Teer D.G.: A study of the trbological behaviour of CrN, Grafit-iC and Dymon-iC coatings uder oil lubrication. Surface and Coatings Technology, 2004, 188–189, 527.
- 16. Cunha L., Andritschky M., Pischow K., Wang Z.: Microstructure of CrN coatings produced by PVD techniques. Thin solids Films, 1999, 355/356, 470.
- 17. Sue J.A., Perry A.J., Vetter J.: Yuong’s modulus and stress of CrN deposited by cathodic vacuum arc evaporation. Surface and Coatings Technology, 1994, 68/69, 129.
- 18. Kawana A.et al.: Development of ceramic coatings for valve seats. Surface and Coatings Technology, 1996, 86–87, 215.
- 19. Lugscheider E.: Oxidation characteristics and surface energy of chromium-based hardcoatings for use in semisolid forming tools. Surface and Coatings Technology, 2000, 133–134, 543.
- 20. Bertrand G., Mahdjoub H., Meunier C.: A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings. Surface and Coatings Technology, 2000, 126, 209.
- 21. Liu C.: Structure and corrosion properties of Cr-N coatings. Journal Vacuum Science and Technology, 2002, A 20(3), 780.
- 22. Djouadi M.A.: Stress profiles and thermal stability of CrxNy films deposited by magnetron sputtering. Surface and Coatings Technology, 2002, 151–152, 510.
- 23. Santos S.C. et.al: Tribological characterisation of PVD coatings for cutting tools. Surface and Coatings Technology, 2004, 184, 141.
- 24. Hui-Ping F.: Effects of PVD sputtered coatings on corrosion resistance of AISI 304 stainless steel. Materials Science and Engineering, 2003, A347, 123.
- 25. Vetter J.: Vacuum arc coatings for tools: potential and application. Surface and Coatings Technology, 1995, 76–77, 719.
- 26. Vogel J.: An update of PVD TiN and new generation coatings for cutting and forming tools and component wear parts. Intern. Manufacturing Technology Conf., Surface Treatment of Cutting Tools, Chicago Illinois, 1990.
- 27. Cunha L.et al.: Performance of chromium nitride and titanium nitride coatings during plastic injection moulding. Surface and Coatings Technology, 2002, 153, 160.
- 28. Navinšek B., Panjan P., Milošev I.: Industrial application of CrN (PVD) coatings, deposited at high and low temperatures. Surface and Coatings Technology, 1997, 184.
- 29. Panjan P. et al.: Improvement of hot forging tools with duplex treatment. Surface and Coatings Technology, 2002, 151–152, 505.
- 30. Smolik J., Walkowicz J., Tacikowski J.: Influence of the structure of the composite nitrided layer/PVD coating on the durability of tools for hot working. Surface and Coatings Technology, 2000, 125, 134.
- 31. Smolik J., Walkowicz J., Tacikowski J.: Influence of the structure of the composite obtained by duplex surface treatment on the durability of hot forging tools. Proc. of 2nd COST 516 Tribology Symposium, Antverpen, Belgium, 1999, edited by J. Meneve and K. Vercammen, 117.
- 32. Walkowicz J. et al.: Application of two stage duplex processes to surface treatment of hot forging dies. Problemy Eksploatacji, 2005, 2, 83.
- 33. Smolik J.et al.: Influence of the structure of the composite: nitrided layer/PVD coating on the durability of forging dies made of steel DIN 1.2367. Surface and Coatings Technology, 2004, 180–181, 506.
- 34. Smolik J., Walkowicz J., Tacikowski J.: Analysis of wear mechanisms of hot forging tools coated with different composites obtained by duplex treatment method. Proc. of 3nd COST 516 Tribology Symposium, Eibar, Spain, 2000, edited by A.Igartua and A.Alberdi, 192.
- 35. Romero J., Esteve J., Lousto A.: Period dependence of hardness and microstructure on nanometric Cr/CrN multilayers. Surface and Coatings Technology, 2004, 338, 188–189.
- 36. Major L. et al.: Crystallographic aspects related to advanced tribological multilayers of Cr/CrN and Ti/TiN types produced by pulsed laser deposition (PLD). Surface and Coatings Technology, 2006, 200, 6190.
- 37. Berger M. et al: The multilayer effect in abrasion – optimising the combination of hard and tough phases. Surface and Coatings Technology, 1999, 1138, 116–119.
- 38. Jehn H.A.: Improvement of the corrosion resistance of PVD hard coating-substrate system. Surface and Coatings Technology, 2000, 125, 212.
- 39. Han S. et al.: The effect of Cr interlayer on the microstructure of CrN coatings on steel. Thin Solid Films, 2000, 578, 377–388.
- 40. Berger M. et al: The multilayer effect in abrasion-optimising the combination of hard and tough phases. Surface and Coatings Technology, 1999, 1138, 116–119.
- 41. Mack M.: Surface technology. Wear protection. Verlag Moderne Industrie AG&Co, Landsberg/Lech, Box 1751.
- 42. www.matweb.com.
- 43. Kim D. el al.: Properties of TiN–TiC multilayer coatings using plasma-assisted chemical vapor deposition. Surface and Coatings Deposition, 1999, 906, 116–119.
- 44. Lee K.W. et al.: Tribological and dry machining evaluation of superhard TiB2/TiC multilayer coatings deposited on Si(001), M2 steel, and C3 WC cutting tool inserts using magnetron sputtering. Surface and Coating Technology, 2005, 194, 184.
- 45. Smolik J., Zdunek K.: Investigation of the influence of chemical composition of Ti(CxN1−x) layer on the stresses value in the multilayer coating TiC/Ti(CxN1−x)/ TiN. Surface and Coating Technology, 1999, 398, 116–119.
- 46. Bunshah R.F.: Deposition technologies for films and coatings. Noyes Publications, Park Ridge, New Jersey, USA.
- 47. Ichimura H., Ando I.: Mechanical properties of arc-evaporated CrN coatings: Part I – nanoindentation hardness and elastic modulus. Surface and Coatings Technology, 2001, 145, 88.
- 48. Navinsek B., Panjan P., Milosev I.: Industrial applications of CrN (PVD) coatings, deposited at high and low temperature. Surface and Coatings Technology, 1997, 182.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0025-0073