
DIAGNOSTYKA’4 (40)/2006

TOMANEK, PRZYSTA KA, ADAMCZYK, Optymization Of Structure Of Neural Models …

15

OPTIMIZATION OF STRUCTURE OF NEURAL MODELS

USING DISTRIBUTED COMPUTING ENVIRONMENT

Adam TOMANEK, Piotr PRZYSTA KA, Marek ADAMCZYK

Silesian University of Technology, Department of Fundamentals of Machinery Design

Konarskiego Street 18a, 44-100 Gliwice, Poland, e-mail: pprzystalka@polsl.pl, madamczyk@polsl.pl

Summary

The main aim of this paper was to identify the optimal structures of considered neural models using

the distributed computing environment. In this paper distributed optimizing of feed-forward neural

network architectures for given problems is presented. The computing environment is composed of a few

important packages and modules and has been created by the authors in order to aid developing some soft

computing methods [4], where a lot of calculations are needed. At the beginning the authors decided to

adapt a simple systematic-search algorithm that searches through every possible combination of network

structures. Since this class of algorithms requires large amount of computation the distributed computing

system was employed.

Keywords: distributed computing, ad-hoc computing clusters, artificial neural networks,

heuristic modeling, optimizing neural network architecture.

OPTYMALIZACJA STRUKTURY MODELI NEURONOWYCH

Z ZASTOSOWANIEM ROZPROSZONEGO RODOWISKA OBLICZENIOWEGO

Streszczenie

G ównym celem przeprowadzonych bada by o zidentyfikowania optymalnej struktury

rozpatrywanych modeli neuronowych z zastosowaniem rodowiska do oblicze rozproszonych.

W artykule zaprezentowano zastosowanie systemu do rozproszonej optymalizacji struktury sztucznej

sieci neuronowej typu perceptron wielowarstwowy dla zadanego problemu. Prezentowane rodowisko

obliczeniowe jest z o one z kilku pakietów oraz modu ów i zosta o utworzone przez autorów w celu

wspomagania rozwoju metodologii modelowania heurystycznego [4], gdzie niezb dnych jest wiele

oblicze . W pocz tkowym stadium rozwoju oprogramowania autorzy zastosowali prosty algorytm

przeszukiwania systematycznego ka dej mo liwej kombinacji struktury sieci. Poniewa tego typu

algorytmy z regu y wymagaj du ych mocy obliczeniowych, postanowiono wykorzysta system

omawiany w niniejszym artykule.

S owa kluczowe: rozproszone obliczenia, klastery typu ad-hoc, sztuczne sieci neuronowe,

modelowanie heurystyczne, optymalizacja struktury sieci neuronowej.

INTRODUCTION

Heuristic modeling of objects and processes [4]

is a very difficult task. Most of the physical

processes realized by complex objects are stochastic

and dynamic in nature. Sometimes it is impossible to

use analytical methods [4] because modeling of such

systems (i.e using physical processes) is

a complicated task involving plenty of time and

effort. It is necessary to do a lot of calculations. This

purpose generates the need of having a high-

powered CPU unit that can make a lot of

calculations in a short time. In case like this there

are at least two alternative ways to solve this

problem. One is to use a supercomputer, while the

other is to use a group of computers working

together simultaneously [3]. A collection of PCs

(nodes) is called a cluster.

Recently, clusters of personal computers (PCs

for short) are high-powered technical computing

platforms offering a low-priced alternative to

traditional supercomputers [1, 2]. PCs clusters

besides the low cost possess much more advantages

such as: can be built in a modular fashion (for

persons’ requirements), the number of nodes, the

node types and the network may be chosen, etc. In

many articles it is possible to find classification of

computer clusters by functionality: High

Performance Computing [3], High Availability

Computing [9], Load Balancing Cluster [5, 9].

This paper deals with distributed optimizing of

feed-forward neural network architectures for

heuristic modeling of a dynamic system and an

industrial plant using the described computing

environment.

This environment is easy-to-use, free-of-charge

for non-commercial research purposes and is an

ideal platform for all social scientists and even for

graduate students. It is designed to be run on a usual

PC-compatible computer without installing anything

DIAGNOSTYKA’4 (40)/2006

TOMANEK, PRZYSTA KA, ADAMCZYK, Optymization Of Structure Of Neural Models …
16

on the computer hard drive. The environment may

be used in many applications but in this time it is

applied for a well-known problem such as

optimizing neural networks topology. There are

many paper and books deals with this task [5, 7].

These methods usually need to do a lot of

calculations. In other words many variants of

network structures have to be tried. Therefore, there

is a need to use a distributed system.

The paper is composed as follows. In Section 1

a brief description of this environment is given.

Next, in Section 2 some performance tests are

presented. At the end of the paper, there are two

examples presented. They show modeling of

a dynamic system and modeling of an electric

furnace by means of the described environment.

1. ENVIRONMENT DESCRIPTION

1.1. The main idea

The basic schema of the distributed computing

environment for heuristic modeling of objects and

processes is given in Figure 1. It is multilayer

application architecture. There are two major layers:

the low-level layer (realizing migration of processes

or threads) and the high-level one (e.g. user

interface, web server, database, neural network

simulator engine, etc. for solving given problems).

Fig.1. Architecture of the distributed

 computing environment for a neural modeling

1.2 Main components The low-level layer

The main part of the computing environment

includes the openMosix system for parallel

computing. openMosix is a Linux kernel extension

for single-system image clustering [2, 5]. This

kernel extension turns a network of ordinary

computers into a supercomputer for Linux

applications. The openMosix technology is

composed of two major parts [5]: a Preemptive

Process Migration (PPM) mechanism and a set of

algorithms for adaptive resource sharing (both are

implemented at the kernel level and they are

completely transparent for user level). The PPM is

able to migrate any process, at any time, to any

available node by using information gathered from

one of the resource sharing algorithms. openMosix

has no central control (no master/slave relationship

between nodes), each node operates as an

autonomous system and it allows dynamic

configuration. There are two main resource sharing

algorithms of openMosix [5]: the load-balancing and

the memory ushering.

Using a Linux system and OpenMosix

technology as a low-level layer unlocked an easier

way to distribute processes and threads seamlessly

across any machine on the network. Instead of

needing a lengthy and complex installation process,

the operating system with environment runs directly

from a CD.

The high-level layer

There are also included tools based on the GNU

Compiler Collection (GCC) and programs (Apache,

SQlite, etc.) for programming in C, C++, Fortran,

and Java etc. For modeling task the environment

gives Stuttgart Neural Network Simulator (SNNS

for short, a software simulator for neural networks

on Unix/Linux workstations) [6].

Additionally, one is able to access files on USB

memory devices, floppy, Zip or hard drives

connected to the computer, as well as networked

resources on Windows and Macintosh networks and

on the Internet.

User interface

In order to simplify usage of the distributed

system for both the administrator and end-user the

website was designed using PHP language.

Fig.2. Easy to access user interface (in Polish)

Figure 2 shows an example of the sub-site,

where the user has to set some parameters for global

and local optimization algorithms of neural network

topology. The user is also able to modify nearly all

the options available in the SNNS. Thus, it makes

possible to prepare several different network

topologies and many different types of learning

procedures automatically. The above-described

environment also gives a simple interface for

analyzing errors. The user is able to analyze quality

of the model by looking at figures generated on

a webpage and he/she can use some formal quality

measures as well. Three various quality measures

were defined: Thiel’s coefficient (U), mean absolute

percentage error (MAPE), and confirming with

Obuchowicz coefficient (J) (detailed description of

quality measures was omitted in the paper).

DIAGNOSTYKA’4 (40)/2006

TOMANEK, PRZYSTA KA, ADAMCZYK, Optymization Of Structure Of Neural Models …
17

The last advantage of this interface is that after

the optimizing stage the user may get a complete

C-code with an embedded optimal neural structure

and put it into a dedicated system.

2. PERFORMANCE AND SPEED TESTS

There are at last two ways to create programs

that can be distributed among different machines in

a network (employing the cluster). One way is to use

simple BASH scripts which run several independent

processes or the second is to write C/C++ programs

using POSIX threads API [7].

Fig.3. Performance test of the cluster

In particular, the authors have carried out a series

of performance tests (all the trials were carried out

on 27 computers with Pentium 4 dual channel

processor and 2 GB RAM connected with each other

by 1-Gb Ethernet network infrastructure). These

tests depended on running sixty processes in the

same time (each process needed about one minute to

be executed). In Figure 3 average results are shown.

The time of execution of all processes for 27

nodes, on the average, is over twenty times faster

than for a single PC.

3. EXAMPLES OF HEURISTIC MODELING

In the following part of the paper two examples

of applications will be demonstrated. The first one

shows results of using the computing environment

and commercial Matlab environment (without

distributed engine and also without optimization of

network topology) for modeling a dynamic system.

The second one presents results of modeling an

industrial furnace with using the distributed system

only.

3.1. Modeling dynamic system

For the given input-output pairs {u(k),y(k)}

generated by the non-linear system defined by:

22

21

11221

kuky

kukukukukyky
ky

, (1)

identify a topology of the network and its para-

meters. In the training stage the input-target patterns

were represented as follows:
Nkkk ,...,1|,TP

]5...1[kukukukP , (2)

]5...21[kykykykT

where: u(k) was initialized with random values

(1000 samples with a uniform distribution in the

range <-2; 1.2>). In the testing stage three different

input signals were used: polyharmonic signal, hard-

limit signal and pseudo-random binary sequence (in

Tables 1 and 2 results only for the first signal are

shown).

For this task two experiments were done. Firstly,

the authors used simple scripts written using Matlab

language. There were implemented three kinds of

a neural network: a simple feed-forward neural

network (ffbp), feed-forward neural network with

delay lines (ffbptd) and locally recurrent one

iir(2,1)arx(1,1). Their topologies and training methods

will not be discussed in this paper. The exemplary

results are presented in Table 1.

Table 1. Results obtained for static and locally

recurrent neural networks (using Matlab program

without distributed engine)
J

[-]

U

[-]

MAPE

[%]

Neural

network
8,35E-05 1,19E-01 2,28E-01 ffbptd

9,12E-05 2,11E-01 2,56E-01 iir(2,1)arx(1,1)

12E-05 2,28E-01 2,76E-01 ffbp

Table 2. Results obtained for feed-forward neural

networks with optimizing their structures (using

distributed computing system)
J

[-]

U

[-]

MAPE

[%]

Neural

network
1 5,28E-05 1,52E-01 1,87E-01 11.8.21.1

2 5,47E-05 1,54E-01 1,97E-01 11.21.20.1

3 5,54E-05 1,55E-01 1,99E-01 11.16.16.1

4 5,66E-05 1,57E-01 2,04E-01 11.12.12.1

.

Next, the authors employed the distributed

computing system in order to find optimal feed-

forward neural network architecture. Before starting

optimization of a structure learning algorithms and

their parameters were selected (simulated annealing

for global optimization and backpropagation

algorithm with momentum technique for local

optimization). The maximum network complexity

was set up as a network with 11 neurons with

hyperbolic activation function in the input layer, 30

neurons with hyperbolic function in the first hidden

layer, 30 neurons with hyperbolic function in the

second hidden layer and one unit with linear transfer

function in the output layer. About eight hours were

necessary to find an optimal network topology with

using the distributed system (with 27 nodes). The

results received during the testing stage are included

in Table 2.

3.2. Modeling electric furnace

This example describes the application of the

discussed distributed system to data gathered from

the real process. In order to create a submodel of the

process which is described in [4] a non-linear

discrete difference equation is proposed (Eq. 2,

inputs and output were selected based on

information from staff maintaining this object and

technical documentation dealing with this process):

DIAGNOSTYKA’4 (40)/2006

TOMANEK, PRZYSTA KA, ADAMCZYK, Optymization Of Structure Of Neural Models …
18

 kykpkkkkfkky CuCu ,,ˆ,ˆ,,ˆˆ LILI , (3)

where: I(k) is a vector of three currents, L(k) is

a vector that determines positions of three

electrodes; p(k) is a position of a claw of the

transformer; yCu(k) is a current state parameter

describing the copper concentration in slag; k is the

time horizon of prediction (for this example it equals

15, 20 and 60 min.); f̂ represents a non-linear input-

output relation of the feed-forward neural network;

kk LI ˆ,ˆ are suitably preprocessing currents and

electrodes positions.

Table 3. Results received for four-layered feed-

forward neural networks with optimizing their

structures (using distributed computing system)
J

[-]

U

[-]

MAPE

[%]

Neural

network

k=15

1 4,11E-03 9,54E-01 2,43E+00 15.7.11.1

2 4,17E-03 9,64E-01 2,63E+00 15.4.12.1

3 4,18E-03 9,64E-01 2,72E+00 15.7.4.1

.

k=20

1 7,27E-03 9,58E-01 3,14E+00 15.11.6.1

2 7,40E-03 9,65E-01 3,22E+00 15.9.6.1

3 7,44E-03 9,67E-01 3,20E+00 15.8.7.1

.

k=60

1 4,52E-02 8,36E-01 8,75E+00 15.8.5.1

2 4,65E-02 8,49E-01 8,49E+00 15.5.5.1

3 4,67E-02 8,51E-01 8,60E+00 15.6.4.1

.

In this example the authors have proceeded

similarly as in the first case. Nevertheless, here four-

layered network (15 neurons in the input layer with

hyperbolic transfer function, two hidden layers with

30 neurons in each with hyperbolic function as well

and one output neuron with linear activation

function) was set up as the maximum network

complexity. Some results of optimization are given

in Table 3. They are not as good as in the first task

but they are still acceptable. Note that the modeled

plant is very complex, therefore simple feed-forward

networks are not able to represent their completely

dynamic behavior (authors are going to employ

Jordan and Elman networks to do so in the future).

4. SUMMARY

With respect to the experiments conducted here

it can be stated that generally, a distributed

computing is very fascinating domain of research.

The authors have presented a complete computing

environment that might be applied for modeling

tasks (using soft modeling methods). It is a tool free

of charge in case of research purposes.

Note that the authors did not want to show that

their system is better than commercial products but

they would like to present some advantages of

freeware systems and their applications.

5. FUTURE WORK

For the reason that systematic-search algorithms

are not very effective the authors will try to use the

ENZO application that offers genetic algorithm for

optimizing network topology (it is an extension of

the SNNS). In case when migration of this

application would not be possible to realize, they

would create their own BASH scripts. There will

also be a trial with applying other types of

architectures such as: Jordan networks, Elman and

extended hierarchical Elman networks.

ACKNOWLEDGMENTS

Paper presents a selected part of the research

supervised by Prof. W. Moczulski. This research has

been partially supported by the Ministry of

Education and Scientific Research under grant

No. 4 T07B 018 27.

REFERENCES

[1] Barak, A.; Shiloh, A.; Amar, L.: An

organizational grid of federated MOSIX clusters.

Computer Systems and Software Engineering,

1996., Proceedings of the Seventh Israeli

Conference on 12-13 June 1996 Page(s):38 - 45

Digital Object Identifier 10.1109/ICCSSE.

1996.554847

[2] Lottiaux, R.; Gallard, P.; Vallee, G.; Morin, C.;

Boissinot, B.: OpenMosix, OpenSSI and

Kerrighed: a comparative study. Cluster

Computing and the Grid, 2005. CCGrid 2005.

IEEE International Symposium on Volume 2, 9-

12 May 2005 Page(s):1016 - 1023 Vol. 2 Digital

Object Identifier 10.1109/CCGRID.

2005.1558672.

[3] Buyya R. High Performance Cluster Computing:

Architectures and Systems. Prentice Hall PTR,

NJ, USA, 1999.

[4] Moczulski W.: Methodology of Heuristic

Modelling of Dynamic Objects and Processes for

Diagnostics and Control.: Recent Developments

in Artificial Intelligence Methods. AI-METH

2005, p. 123 – 126.

[5] Korbicz J., Koscielny J.M., Kowalczuk Z.,

Cholewa W. (Eds.): Fault diagnosis. Models,

Artificial Intelligence, Applications.: Springer-

Verlag Berlin Heidelberg 2004 New York. ISBN

3-540-40767-7.

[6] http://openmosix.sourceforge.net/,

The openMosix Project.

[7] http://www-ra.informatik.uni-tuebingen.de

/SNNS/, Stuttgart Neural Network Simulator

home page.

[8] http://yolinux.com/TUTORIALS/LinuxTutorial

PosixThreads.html#BASICS, YoLinux Tutorial:

POSIX thread (pthread) libraries.

[9] http://lcic.org, Linux Clustering Information

Center.

