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Summary 

The main aim of this paper was to identify the optimal structures of considered neural models using 

the distributed computing environment. In this paper distributed optimizing of feed-forward neural 

network architectures for given problems is presented. The computing environment is composed of a few 

important packages and modules and has been created by the authors in order to aid developing some soft 

computing methods [4], where a lot of calculations are needed. At the beginning the authors decided to 

adapt a simple systematic-search algorithm that searches through every possible combination of network 

structures. Since this class of algorithms requires large amount of computation the distributed computing 

system was employed. 
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OPTYMALIZACJA STRUKTURY MODELI NEURONOWYCH  

Z ZASTOSOWANIEM ROZPROSZONEGO RODOWISKA OBLICZENIOWEGO 

 
Streszczenie 

G ównym celem przeprowadzonych bada  by o zidentyfikowania optymalnej struktury 

rozpatrywanych modeli neuronowych z zastosowaniem rodowiska do oblicze  rozproszonych. 

W artykule zaprezentowano zastosowanie systemu do rozproszonej optymalizacji struktury sztucznej 

sieci neuronowej typu perceptron wielowarstwowy dla zadanego problemu. Prezentowane rodowisko 

obliczeniowe jest z o one z kilku pakietów oraz modu ów i zosta o utworzone przez autorów w celu 

wspomagania rozwoju metodologii modelowania heurystycznego [4], gdzie niezb dnych jest wiele 

oblicze . W pocz tkowym stadium rozwoju oprogramowania autorzy zastosowali prosty algorytm 

przeszukiwania systematycznego ka dej mo liwej kombinacji struktury sieci. Poniewa  tego typu 

algorytmy z regu y wymagaj  du ych mocy obliczeniowych, postanowiono wykorzysta  system 

omawiany w niniejszym artykule. 

 
S owa kluczowe: rozproszone obliczenia, klastery typu ad-hoc, sztuczne sieci neuronowe,  

modelowanie heurystyczne, optymalizacja struktury sieci neuronowej. 

 

INTRODUCTION 

 

Heuristic modeling of objects and processes [4] 

is a very difficult task. Most of the physical 

processes realized by complex objects are stochastic 

and dynamic in nature. Sometimes it is impossible to 

use analytical methods [4] because modeling of such 

systems (i.e using physical processes) is 

a complicated task involving plenty of time and 

effort. It is necessary to do a lot of calculations. This 

purpose generates the need of having a high-

powered CPU unit that can make a lot of 

calculations in a short time. In case like this there 

are at least two alternative ways to solve this 

problem. One is to use a supercomputer, while the 

other is to use a group of computers working 

together simultaneously [3]. A collection of PCs 

(nodes) is called a cluster. 

Recently, clusters of personal computers (PCs 

for short) are high-powered technical computing 

platforms offering a low-priced alternative to 

traditional supercomputers [1, 2]. PCs clusters 

besides the low cost possess much more advantages 

such as: can be built in a modular fashion (for 

persons’ requirements), the number of nodes, the 

node types and the network may be chosen, etc. In 

many articles it is possible to find classification of 

computer clusters by functionality: High 

Performance Computing [3], High Availability 

Computing [9], Load Balancing Cluster [5, 9].  

This paper deals with distributed optimizing of 

feed-forward neural network architectures for 

heuristic modeling of a dynamic system and an 

industrial plant using the described computing 

environment.  

This environment is easy-to-use, free-of-charge 

for non-commercial research purposes and is an 

ideal platform for all social scientists and even for 

graduate students. It is designed to be run on a usual 

PC-compatible computer without installing anything 
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on the computer hard drive. The environment may 

be used in many applications but in this time it is 

applied for a well-known problem such as 

optimizing neural networks topology.  There are 

many paper and books deals with this task [5, 7]. 

These methods usually need to do a lot of 

calculations. In other words many variants of 

network structures have to be tried. Therefore, there 

is a need to use a distributed system. 

The paper is composed as follows. In Section 1  

a brief description of this environment is given. 

Next, in Section 2 some performance tests are 

presented. At the end of the paper, there are two 

examples presented. They show modeling of  

a dynamic system and modeling of an electric 

furnace by means of the described environment. 

 

1. ENVIRONMENT DESCRIPTION 

 

1.1. The main idea 

The basic schema of the distributed computing 

environment for heuristic modeling of objects and 

processes is given in Figure 1. It is multilayer 

application architecture. There are two major layers: 

the low-level layer (realizing migration of processes 

or threads) and the high-level one (e.g. user 

interface, web server, database, neural network 

simulator engine, etc. for solving given problems).  

 

Fig.1. Architecture of the distributed 

 computing environment for a neural modeling 

 

1.2 Main components The low-level layer 

The main part of the computing environment 

includes the openMosix system for parallel 

computing. openMosix is a Linux kernel extension 

for single-system image clustering [2, 5]. This 

kernel extension turns a network of ordinary 

computers into a supercomputer for Linux 

applications. The openMosix technology is 

composed of two major parts [5]: a Preemptive 

Process Migration (PPM) mechanism and a set of 

algorithms for adaptive resource sharing (both are 

implemented at the kernel level and they are 

completely transparent for user level). The PPM is 

able to migrate any process, at any time, to any 

available node by using information gathered from 

one of the resource sharing algorithms. openMosix 

has no central control (no master/slave relationship 

between nodes), each node operates as an 

autonomous system and it allows dynamic 

configuration. There are two main resource sharing 

algorithms of openMosix [5]: the load-balancing and 

the memory ushering.  

Using a Linux system and OpenMosix 

technology as a low-level layer unlocked an easier 

way to distribute processes and threads seamlessly 

across any machine on the network. Instead of 

needing a lengthy and complex installation process, 

the operating system with environment runs directly 

from a CD.  

The high-level layer 

There are also included tools based on the GNU 

Compiler Collection (GCC) and programs (Apache, 

SQlite, etc.) for programming in C, C++, Fortran, 

and Java etc. For modeling task the environment 

gives Stuttgart Neural Network Simulator (SNNS 

for short, a software simulator for neural networks 

on Unix/Linux workstations) [6].  

Additionally, one is able to access files on USB 

memory devices, floppy, Zip or hard drives 

connected to the computer, as well as networked 

resources on Windows and Macintosh networks and 

on the Internet. 

User interface 

In order to simplify usage of the distributed 

system for both the administrator and end-user the 

website was designed using PHP language.  

 

Fig.2. Easy to access user interface (in Polish) 

 

Figure 2 shows an example of the sub-site, 

where the user has to set some parameters for global 

and local optimization algorithms of neural network 

topology. The user is also able to modify nearly all 

the options available in the SNNS. Thus, it makes 

possible to prepare several different network 

topologies and many different types of learning 

procedures automatically. The above-described 

environment also gives a simple interface for 

analyzing errors. The user is able to analyze quality 

of the model by looking at figures generated on 

a webpage and he/she can use some formal quality 

measures as well. Three various quality measures 

were defined: Thiel’s coefficient (U), mean absolute 

percentage error (MAPE), and confirming with 

Obuchowicz coefficient (J) (detailed description of 

quality measures was omitted in the paper).  
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The last advantage of this interface is that after 

the optimizing stage the user may get a complete  

C-code with an embedded optimal neural structure 

and put it into a dedicated system.  

 

2. PERFORMANCE AND SPEED TESTS 
 

There are at last two ways to create programs 

that can be distributed among different machines in  

a network (employing the cluster). One way is to use 

simple BASH scripts which run several independent 

processes or the second is to write C/C++ programs 

using POSIX threads API [7].  

 
Fig.3. Performance test of the cluster  

 

In particular, the authors have carried out a series 

of performance tests (all the trials were carried out 

on 27 computers with Pentium 4 dual channel 

processor and 2 GB RAM connected with each other 

by 1-Gb Ethernet network infrastructure). These 

tests depended on running sixty processes in the 

same time (each process needed about one minute to 

be executed). In Figure 3 average results are shown.  

The time of execution of all processes for 27 

nodes, on the average, is over twenty times faster 

than for a single PC.   

 
3. EXAMPLES OF HEURISTIC MODELING 

 

In the following part of the paper two examples 

of applications will be demonstrated. The first one 

shows results of using the computing environment 

and commercial Matlab environment (without 

distributed engine and also without optimization of 

network topology) for modeling a dynamic system. 

The second one presents results of modeling an 

industrial furnace with using the distributed system 

only.  

3.1. Modeling dynamic system 

For the given input-output pairs {u(k),y(k)} 

generated by the non-linear system defined by:  

  
22

21

11221

kuky

kukukukukyky
ky

,     (1) 

identify a topology of the network and its para-

meters. In the training stage the input-target patterns 

were represented as follows:  
Nkkk ,...,1|,TP  

                ]5...1[ kukukukP ,        (2) 

]5...21[ kykykykT  

where: u(k) was initialized with random values 

(1000 samples with a uniform distribution in the 

range <-2; 1.2>). In the testing stage three different 

input signals were used: polyharmonic signal, hard-

limit signal and pseudo-random binary sequence (in 

Tables 1 and 2 results only for the first signal are 

shown).  

For this task two experiments were done. Firstly, 

the authors used simple scripts written using Matlab 

language. There were implemented three kinds of  

a neural network: a simple feed-forward neural 

network (ffbp), feed-forward neural network with 

delay lines (ffbptd) and locally recurrent one 

iir(2,1)arx(1,1). Their topologies and training methods 

will not be discussed in this paper. The exemplary 

results are presented in Table 1.  

 

Table 1. Results obtained for static and locally 

recurrent neural networks (using Matlab  program 

without distributed engine) 
J  

[-] 

U  

[-] 

MAPE  

[%] 

Neural 

network 
8,35E-05 1,19E-01 2,28E-01 ffbptd 

9,12E-05 2,11E-01 2,56E-01 iir(2,1)arx(1,1) 

12E-05 2,28E-01 2,76E-01 ffbp 

 

Table 2. Results obtained for feed-forward neural 

networks with optimizing their structures (using 

distributed computing system) 
J  

[-] 

U  

[-] 

MAPE 

[%] 

Neural

network 
1 5,28E-05 1,52E-01 1,87E-01 11.8.21.1 

2 5,47E-05 1,54E-01 1,97E-01 11.21.20.1 

3 5,54E-05 1,55E-01 1,99E-01 11.16.16.1 

4 5,66E-05 1,57E-01 2,04E-01 11.12.12.1 

. . . . . 

 

Next, the authors employed the distributed 

computing system in order to find optimal feed-

forward neural network architecture. Before starting 

optimization of a structure learning algorithms and 

their parameters were selected (simulated annealing 

for global optimization and backpropagation 

algorithm with momentum technique for local 

optimization). The maximum network complexity 

was set up as a network with 11 neurons with 

hyperbolic activation function in the input layer, 30 

neurons with hyperbolic function in the first hidden 

layer, 30 neurons with hyperbolic function in the 

second hidden layer and one unit with linear transfer 

function in the output layer. About eight hours were 

necessary to find an optimal network topology with 

using the distributed system (with 27 nodes). The 

results received during the testing stage are included 

in Table 2.  

3.2. Modeling electric furnace 

This example describes the application of the 

discussed distributed system to data gathered from 

the real process. In order to create a submodel of the 

process which is described in [4] a non-linear 

discrete difference equation is proposed (Eq. 2, 

inputs and output were selected based on 

information from staff maintaining this object and 

technical documentation dealing with this process): 
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 kykpkkkkfkky CuCu ,,ˆ,ˆ,,ˆˆ LILI ,    (3) 

where: I(k) is a vector of three currents, L(k) is  

a vector that determines positions of three 

electrodes; p(k) is a position of a claw of the 

transformer; yCu(k) is a current state parameter 

describing the copper concentration in slag; k is the 

time horizon of prediction (for this example it equals 

15, 20 and 60 min.); f̂ represents a non-linear input-

output relation of the feed-forward neural network; 

kk LI ˆ,ˆ  are suitably preprocessing currents and 

electrodes positions. 
 

Table 3. Results received for four-layered feed-

forward neural networks with optimizing their 

structures (using distributed computing system) 
J  

[-] 

U  

[-] 

MAPE 

[%] 

Neural 

network 

k=15 

1 4,11E-03 9,54E-01 2,43E+00 15.7.11.1 

2 4,17E-03 9,64E-01 2,63E+00 15.4.12.1 

3 4,18E-03 9,64E-01 2,72E+00 15.7.4.1 

. . . . . 

k=20 

1 7,27E-03 9,58E-01 3,14E+00 15.11.6.1 

2 7,40E-03 9,65E-01 3,22E+00 15.9.6.1 

3 7,44E-03 9,67E-01 3,20E+00 15.8.7.1 

. . . . . 

k=60 

1 4,52E-02 8,36E-01 8,75E+00 15.8.5.1 

2 4,65E-02 8,49E-01 8,49E+00 15.5.5.1 

3 4,67E-02 8,51E-01 8,60E+00 15.6.4.1 

. . . . . 

 

In this example the authors have proceeded 

similarly as in the first case. Nevertheless, here four-

layered network (15 neurons in the input layer with 

hyperbolic transfer function, two hidden layers with 

30 neurons in each with hyperbolic function as well 

and one output neuron with linear activation 

function) was set up as the maximum network 

complexity. Some results of optimization are given 

in Table 3. They are not as good as in the first task 

but they are still acceptable. Note that the modeled 

plant is very complex, therefore simple feed-forward 

networks are not able to represent their completely 

dynamic behavior (authors are going to employ 

Jordan and Elman networks to do so in the future).  

 

4. SUMMARY 

 

With respect to the experiments conducted here 

it can be stated that generally, a distributed 

computing is very fascinating domain of research. 

The authors have presented a complete computing 

environment that might be applied for modeling 

tasks (using soft modeling methods). It is a tool free 

of charge in case of research purposes.  

Note that the authors did not want to show that 

their system is better than commercial products but 

they would like to present some advantages of 

freeware systems and their applications.  

5. FUTURE WORK 
 

For the reason that systematic-search algorithms 

are not very effective the authors will try to use the 

ENZO application that offers genetic algorithm for 

optimizing network topology (it is an extension of 

the SNNS). In case when migration of this 

application would not be possible to realize, they 

would create their own BASH scripts. There will 

also be a trial with applying other types of 

architectures such as: Jordan networks, Elman and 

extended hierarchical Elman networks.  
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