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Summary 
The methodology of heuristic modeling is one of the subjects included in the activities developed by 

the Department of Fundamentals of Machinery Design [4, 6]. Among all the approaches of heuristic 
modeling some of the most common are artificial neural networks. There are many papers and books 
devoted to applications of neural networks for modeling dynamic systems [1, 2, 4, 5, 6, 7]. In this paper, 
known approach basing on dynamic neuron model is presented (dynamic neuron with IIR filter in the 
activation block [2]) but some developments are introduced. Locally recurrent networks which are 
composed of dynamic neural units described in [2, 5, 7] are able to model behavior of complex dynamic 
systems. Nevertheless, they have one major disadvantage, that is, neural networks composed of these 
neurons are not able to represent stochastic behaviors of some objects [4,6]. By introducing the ARMAX 
(or ARX) system into dynamic neuron model author has received dynamic neuron unit that never 
behaves in the same way (it brings an artificial neuron closer and closer to the biological model). In this 
paper the author presents formal description of dynamic neuron unit with ARMAX system in the 
feedback block. There are also described a general structure of dynamic neural network composed of 
these neurons, two known training methods and some commonly used quality measures. At the end of the 
paper three examples of applications are given. 

 
Keywords: artificial neural networks, locally recurrent neural networks, linear, non-linear and  

chaotic dynamic systems, quasi-Newton methods, heuristic modeling. 
 

HEURYSTYCZNE MODELOWANIE OBIEKTÓW I PROCESÓW  
PRZY POMOCY DYNAMICZNYCH SIECI NEURONOWYCH 

 
Streszczenie 

Metodologia heurystycznego modelowania obiektów i procesów jest jednym z kierunków bada  
rozwijanym prze Katedr  Podstaw Konstrukcji Maszyn [4, 6]. Spo ród wielu metod modelowania 
heurystycznego du e znaczenie odgrywaj  metody bazuj ce na sztucznych sieciach neuronowych. 
Mo na wyró ni  wiele ciekawych prac badawczych prowadzonych w kierunku modelowania systemów 
dynamicznych z zastosowaniem tego typu narz dzia [1, 2, 4, 5, 6, 7]. W artykule zaprezentowano znane 
podej cie bazuj ce na dynamicznych neuronach (dynamiczny neuron z filtrem IIR w bloku 
aktywacyjnym [2]) z pewnymi modyfikacjami. Lokalnie rekurencyjne sieci neuronowe z o one  
z dynamicznych neuronów opisane w [2, 5, 7] nadaj  si  do modelowania zachowania z o onych 
systemów dynamicznych. Jednak e, posiadaj  one jedn  g ówn  wad  tzn. nie s  zdolne do 
reprezentowania zachowania losowego niektórych obiektów [4, 6]. Poprzez wprowadzenie systemu typu 
ARMAX (ARX) do modeli dynamicznych neuronów autor otrzyma  dynamiczny model neuronu, który 
nigdy nie zachowuj  si  w ten sam sposób (przybli a to model sztucznego neuronu do jego 
biologicznego wzoru). W artykule autor prezentuje formalny opis dynamicznego neuronu z systemem 
typu ARMAX w bloku sprz enie zwrotnego. Opisuje równie  ogóln  struktur  dynamicznej sieci 
neuronowej z o onej z tych neuronów, dwa znane algorytmy trenuj ce oraz powszechnie stosowane 
miary jako ci. Przyk adowe zastosowania opisywanych sieci zaprezentowane s  w ko cowym 
fragmencie opracowania. 

 

S owa kluczowe: sztuczne sieci neuronowe, lokalnie rekurencyjne sieci neuronowe, liniowe,  
nieliniowe i chaotyczne systemy dynamiczne, metody quasi-Newtonowskie, modelowanie heurystyczne. 

 
INTRODUCTION 

 
Nowadays there are many industrial plants that 

carry out complex processes. In general, a dynamic 
behaviour of them is difficult to be modelled with 

the use of classical analytical methods [1, 2, 3, 4, 6]. 
Sometimes it is easier and faster (in some cases it is 
only one way) to use selected heuristic methods 
(soft modeling methods) in order to solve various 
engineering problems in modeling tasks [4]. The 
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paper describes locally recurrent neural networks 
applied to model non-linear dynamic objects and 
processes. Presented networks consist of artificial 
neurons with linear dynamic system blocks. The 
general concept is not new [2, 5], but some further 
developments are introduced. Generally, neural 
networks which are composed of those neurons [2, 
5] are able to represent dynamic behaviour of some 
systems but they are not able to model their 
stochastic behaviour themselves [4, 6]. Therefore, 
there is need to elaborate much more general neuron 
models which can be used for modeling both 
dynamic and stochastic systems simultaneously.  

In this paper, the author develops dynamic 
neuron model with the IIR or FIR filter in the 
activation block by introducing the ARMAX (or 
ARX) system into its structure. The behaviour of 
that neuron is not always deterministic (it is 
described in Section 1). 

The paper is composed as follows. In Section 1  
only some equations for formal descriptions of 
dynamic neurons are shown.  Next, in Section 2  
a few different variants of a dynamic unit are 
presented. Section 3 describes applications of two 
known quasi-Newton methods (the BFGS method 
and the LM method) for training depicted neural 
networks. At the end of the paper, there are three 
examples presented. They show modeling of 
dynamic systems, fault-tolerant application and 
modeling of an electric furnace. 

   
1. ARTIFICIAL NEURON WITH IIR/FIR AND 

ARX/ARMAX DYNAMIC SYSTEMS 

 

Developing dynamic neural units is one of the 
most common ways to improve the ability of 
artificial neural networks to model linear, non-linear 
and chaotic dynamic systems.  

Dynamic and stochastic behaviour is embedded 
in the neuron by introducing the IIR or FIR filter 
and the ARX or ARMAX system into its structure.  
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Fig. 1. Formal model of artificial neuron with  

dynamic systems in the activation  
and feedback block 

The behaviour of the dynamic neural unit under 
consideration is described by the following 
equations:  
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where: 
1211 ... Rwww  is a vector with input 

weights wi; ui(k) are neuron inputs, i=1,2,…,R;  
R is a number of inputs. 
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where: 
BA bbbaaa ...... 10212

 is a vector 

describing the IIR filter placed between the 
summing junction and the activation block; a  and b   
are the feedback and feed-forward filter parameters; 
(A,B) is its order, and 
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where: 2
1010213 ......... eECD eeecccddd  is  

a vector describing the ARMAX system located in 
the output feedback block;  - vector of a white-
noise random process where  and e

2 are the mean 
value and variance of a white noise; c  , d  , e  - 
system parameters; (C,D,E) is the structure 
representation of ARMAX system. The term e (k-

) is zero for deterministic dynamic systems and is  
a white-noise random process for stochastic systems.  

There are three different ways of calculating its 
output:  

by using Gaussian activation function:  
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by using hyperbolic activation function: 
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by using linear activation function: 

 kaky 12 ,F~ ,           (6) 

where: abuc  - a vector depending on 

selected activation function. 
 
2. DYNAMIC NEURAL NETWORK 

 
This class of artificial neural networks (with 

dynamic neuron models) is well-known as locally 

recurrent globally feed-forward networks [2,5]. As 
we can read in [2] that is somewhere in between  

a feed-forward and a globally recurrent archi-

tecture. The dynamic unit described in Sec. 1 may 
be used differently. 

Figure 2 shows three units: the first one is  
a static neuron (for B=0, b0=1, A=1, a1=0, 

C=c0=D= =d1=E=e0=0); the second unit is  
a completely dynamic neuron model with white-
noise random process and hyperbolic (tan for short) 
activation function; the last one represents also  
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a dynamic neuron model with the finite impulse 
response filter and there is Gaussian (gauss for 
short) activation function. The topology of  
a dynamic neural network (described in Fig. 3) 
which has been used in this part of the research 
consists of three layers (a general structure was 
chosen based on information in the literature).  The 
first layer has simple static neurons with a non-
linear activation function. Hidden layer includes 
dynamic neurons with a non-linear activation 
function (dynamic neurons iir(A,B)armax(C,D,E)-tan, 
fir(B)arx(C,D) -gauss, iir(A,B)arx(C,D)-tan, etc. were 
tested). The last layer consists of simple static units 
but the activation function is linear. 

IIR
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ARX

a) b) c)

 
 

Fig. 2. Example of dynamic neural units (short 
notation): a) static neuron; b,c) dynamic neurons 

with the IIR or FIR block and ARMAX  
or ARX block 
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Fig. 3. Structure of a dynamic neural network 

All unknown network parameters may be repre-
sented by the vectors: nLnLnLnLL

321
, 

where: L is a number of the layer, n is a unit 
number. For a three-layered network we are able to 
define: L {1,2,3} and for each layers there are 
n=nL={1,2,…,NL}, NL - the number of units in the 
layer L. 
 

3. LEARNING ALGORITHMS AND QUALITY 

COEFFICIENTS 

 
3.1. Learning methods 

There are a lot of optimization problems in many 
engineering areas which can be formulated as 
follows: given a real-valued loss (cost) functi-
on 1: nf , find a global minimum, 

        f
C

minarg* ,                   (7) 

where: C is the predefined parameters space, usually  
a compact set in n ; *  is the vector with optimal 
network parameters. 

There are many solutions to this problem, but in 
general two kinds of high-performance algorithms 
are widely used: based on standard numerical 
optimization techniques (like gradient methods, 
quasi-Newton methods) or based on heuristic techni-

ques (like recursive random search, simulated 
annealing, genetic algorithms or even simple 
momentum technique in the backpropagation 
algorithm). In this paper the Broyden, Fletcher, 
Goldfarb, and Shanno (BFGS for short) quasi-
Newton algorithm and the Levenberg-Maquardt 
(LM for short) algorithm are used. For the cost 
function that is described by the following equation: 

 ;ˆ; kykykf ,           (8) 

should be minimized basing on a given set of input-
output patterns. All the line-search methods explore 
along the line containing current point (k), parallel 
to the search direction d(k) (Eq. 9).  

 kkk d1 ,           (9) 

where:  is a scalar step length parameter. In the 
next part of this Section the two ways of definition 
of a direction will be discussed.  
 
For the BFGS method the direction is given as 
follows: 

Hd ;;1 kfkk ,         (10) 

where: the gradient information ;kf  is derived 

by partial derivatives using the numerical differe-
ntiation method via finite differences (i.e. like in 
[3]). To avoid a large amount of computation during  
calculating H numerically the formula of BFGS for 
its approximation is used: 
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where: H(k=0) can be a set as the identity matrix I. 
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On the other hand, for the LM method the direction 
can be calculated as follows: 

IJJd ;;;
1

kfkkk T ,    (13) 

where: the Jacobian information is derived using 
also a numerical differentiation method, and scalar  
controls both the magnitude and direction. 

A very important thing is that the term e (k- ) 
at each k-th algorithm step has to be fixed (for both 
algorithms).   
 
3.2. Quality measures 

The quality coefficients of neural network 
models under consideration are given below: 

Mean Absolute Percentage Error (MAPE for 
short): 

 N

n yy

nyny

n
MAPE

1 minmax

ˆ100 ,         (14) 

Thiel’s statistic (U for short): 
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conforming with Obuchowicz [2] is measure 
(J for short): 
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where: N is the number of patterns; nŷ  is the 

network output.  
These measures may be employed for different 

tasks (i.e. the first and second coefficients are 
meaningful for control systems whilst the last one 
could be used for comparing with those described in  
the literature).  
 
4. EXPERIMENTAL RESULTS 

 
In the following parts of the paper some 

examples of applications will be presented. The first 
and second subsections show the results obtained 
using models which have been determined in the 
Matlab environment like Simulink and some other 
toolboxes. The last example describes the 
application of discussed neural structures to data 
gathered from the real process. 
 
4.1. Modeling of dynamic systems 

Problem 1 
Given input-output pairs {u(k),y(k)} generated by 

the non-linear system defined by (Narendra K, 
Parthasarathy K.):  
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identify the topology of the network and its para-
meters.   

For this task several different variants of 
dynamic and static neural structures were examined. 
Table 1 presents some results (one can compare 
different neural structures).  

Table 1. Results obtained for feed-forward and 
locally recurrent neural networks 

No. 

Iter. 
J MAPE U 

Type 

[-] [-] [%] [-] 
LM method 

ffbp 200 12e-05 2,76e-01 2,28e-01 
ffbptd 200 8,35e-05 2,28e-01 1,19e-01 

iir(2,1)arx(1,1) 200 9,12e-05 2,56e-01 2,11e-01 
BFGS method 

ffbp 200 32e-04 1,47 1,19 
ffbptd 200 22e-04 9,47e-01 7,8e-01 

iir(2,1)arx(1,1) 200 35e-04 7,21e-01 8,1e-01 

There are results for three-layered perceptron 
ffbp (the input layer has 16 neurons with hyperbolic 
activation function; 8 neurons in the hidden layer 

with hyperbolic function; 1 neuron in the output 
layer), for time delay feedforward network ffbptd 
with the same architecture as previous one but also 
with a delay block (0,1,2) in the input layer. The last 
one is dynamic neural structure iir(2,1)arx(1,1) 
(discussed in Sec. 2, three-layered network 5-12-1 
with dynamic neurons and hyperbolic activation 
function in the hidden layer). As we can see locally 
recurrent network usually requires much less 
neurons to obtain almost the same quality result as 
in the case of a simple feed-forward network with 
static neurons. However, we must remember that 
dynamic neuron model is described by much more 
parameters than straightforward neural unit.  

In the training stage the input-output patterns 
were represented as follows: 

    Nkkk ,...,1|,TP  

       
kyk

kykykukukuk
T

T

P 2121 ,   (17) 

and u(k) was initialized with random values (1000 
samples with a uniform distribution in the range <-2; 
1.2>). In the testing stage three different input 
signals were used: polyharmonic signal, hard-limit 
signal and pseudo-random binary sequence (in Table 
1 there are errors for the first signal only).   

 
4.2. Fault-tolerant application 

Problem 2 

Design a virtual sensor 2L̂  that could serve as  

a plain fault detection and identification block 
(based on the non-linear analytical redundancy 
technique). 
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Fig. 5. The three-tank system 

The three-tank system model as shown in figure 
5 is written using well-known mass balance 
equations. The system can be represented like in [2] 
by:  

     

tqtqtq
t

tLtL
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where: qij represents the water flow rate from tank  
i to j which is given by Torricelli’s rule:  
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tLtLtLg

tLtLtLsignStq

ijji

ijjipiij

2

,              (19) 

where: Li represents fault of the measuring channel 

i, qfi is undesirable leakage from the tank i. 

The measured signals are: streams of the medium 

q1, q2 that flow into the first and second tank; control 

signals U1, U2; levels in tanks L1, L2, L3.  
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Fig. 6. Virtual sensor for fault detection  

and identification block 

 

 
Fig. 7. Virtual and real sensor outputs (results for 

testing stage: MAPE<5%) 

 

In order to create a virtual sensor the three-

layered dynamic neural network was used (7 

neurons with hyperbolic transfer function in the 

input layer, 4 hidden neurons with the iir(1,1)arx(1,0) 

blocks and hyperbolic function, one output neuron 

with linear activation function, Fig. 6). The training 

and testing patterns were obtained by simulating 

model (Eq. 18) in the Matlab environment. The error 

(MAPE) was less than 5%, therefore it was possible 

to use the model in the fault detection and control 

modules what is shown in Figures 8 and 9.  

 
Fig. 8. Fault in the measuring channel 2 (without 

analytical redundancy) 

 

The fault of the measuring channel no. 2 is detected 

by comparing value from the sensor L2 with 

estimated value 
2L̂ obtains from the virtual sensor. 

When absolute difference between these values is 
greater than 10% of scale range then control system 
change its rules (Fig.9). 
 

 
Fig. 9. Fault-tolerant control (with  

analytical redundancy) 
 

4.3. Modeling of industrial furnace 

Problem 3 
The database concerning process of copper 

reduction from slag has been collected by SCADA 
system. There are more than 180 attributes collected: 
parameters of power supply, temperatures in many 
points of the furnace, and state parameters such as 
mass of charge, and its chemical analysis determined 
three times a cycle. In order to create a submodel of 
the analyzed process a non-linear discrete difference 
equation is proposed (Eq. 20, in the first stage of 
research inputs and output were selected based on 
information from staff maintaining this object and 
technical documentation dealing with this process): 

 kykpkkkkfkky CuCu ,,ˆ,ˆ,,ˆˆ LILI ,    (20) 

where: I(k) is a vector of three currents (for 
electrodes R, S, T), L(k) is a vector determines that 
positions of three electrodes; p(k) is a position of  
a claw of the transformer; yCu(k) is a current state 
parameter describing the copper concentration in  
slag; k is the time horizon of prediction (for this 

example it equals 5, 10, 15 or 20 min.); f̂ represents 

a non-linear input-output relation of the neural 
network; kk LI ˆ,ˆ  are suitably preprocessing 
currents and electrodes positions (detailed descri-
ption was omitted in the paper).  

In the training stage 8000 samples were used. 
The testing of the model was carried out using 
another set of 4000 samples. In Table 2 the results 
received for two neural networks are presented.  
A simple feed-forward with time delay lines 
network is presented ffbptd (12 neurons with time 
delay lines (0,1,2) and hyperbolic activation 
function in the input layer, 7 neurons in the hidden 
layer with hyperbolic activation function; one output 
neuron with linear transfer function). There are also 
results for dynamic neural network fir(2)arx(1,0)  



DIAGNOSTYKA’2 (38)/2006 

PRZYSTA KA, Heuristic Modeling Of Objects And Processes Using Dynamic Neural Networks 
36

(6 neurons with hyperbolic activation function in the 

input layer; 5 hidden neurons with the fir(2) filter and 

the arx(1,0) system and hyperbolic function; one 

output neuron with linear transfer function).  

 

 
 

Fig. 10. Example of process and model outputs 

obtained for different neural structures 

 

Table 2. Results obtained for locally recurrent  

neural networks 
k J MAPE U 

Type 
[min.] [-] [%] [-] 

LM method 

ffbptd 
5 8,70e-04 1,17 1,58 

fir(2)arx(1,0) 5 5,34e-04 0,25 0,50 
ffbp 

10 2,00e-03 1,79 1,13 
fir(2)arx(1,0) 10 1,1e-03 0,91 0,55 

ffbp 
15 5,00e-03 2,09 1,14 

fir(2)arx(1,0)) 15 1,64e-03 1,20 0,49 
ffbp 

20 9,28e-03 3,82 1,14 
fir(2)arx(1,0) 20 1,4e-03 0,90 0,26 

 

As we can observe, all the results (MAPE 1%) for 

each example are quite similar to each other. 

However, in the case of the fir(2)arx(1,0) network 

Thiel’s coefficients (U) are lesser than in the ffbptd 

network. Consequently, these models may be useful 

in fault detection systems or even in control systems. 

 

5. SUMMARY 

This work demonstrates theoretical and practical 

aspects of heuristic modeling based on locally 

recurrent neural networks. As one can see it is 

possible to introduce into artificial neuron structure 

some modules which represent its dynamic and 

stochastic behaviour (it brings an artificial neuron 

closer and closer to the biological model). 

Moreover, some known local optimization 

algorithms may be used in order to train dynamic 

network networks. Nevertheless, these algorithms 

are still too slow for the reason that the gradient 

information is computed using a numerical 

differentiation method.  

 

6. TO DO 

Many problems are still open to solution, such as 

the automatic identification of dynamic neural 

topology. However, the most important tasks are to 

find the gradient information using an analytical 

method and to apply some global optimization 

algorithms (e.g. genetic algorithms or recursive 

random search) for preliminary adjusting network 

parameters.  
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