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Summary 

The paper presents a model of the vehicle routing problem with flexible (fuzzy) constraints. This kind 
of model allows a decision maker to explore a set of alternatives with diverse cost and constraint 
satisfaction levels. The model is tested on well-known instances of the vehicle routing problem with time 
windows adjusted to the fuzzy case. They are solved by a multiobjective Pareto Memetic Algorithm. The 
obtained results indicate that the introduction of fuzzy constraints leads to exploration of new alternatives 
which may be interesting to a decision maker. 
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WIELOKRYTERIALNY PROBLEM PLANOWANIA TRAS 

Z OKNAMI CZASOWYMI W WERSJI ROZMYTEJ 
 

Streszczenie 
Artyku  prezentuje model problemu planowania tras z elastycznymi (rozmytymi) ograniczeniami. 

Model takiego rodzaju pozwala decydentowi na wybór rozwi zania spo ród zbioru alternatyw ze 
zró nicowanym kosztem i stopniem spe nienia ogranicze . Ten model zosta  przetestowany na 
klasycznym zestawie instancji problemu planowania tras z oknami czasowymi dostosowanych do 
przypadku rozmytych ogranicze . Rozwi zania s  uzyskiwane przez u ycie wielokryterialnego 
algorytmu memetycznego. Uzyskane wyniki wskazuj  na to, e wprowadzenie elastycznych ogranicze  
prowadzi do odkrycia rozwi za , które mog  by  interesuj ce z punktu widzenia decydenta 

 
S owa kluczowe: problem planowania tras, elastyczne ograniczenia, optymalizacja wielokryterialna.  

 
1. INTRODUCTION 

Models of the Vehicle Routing Problem (VRP) 
proposed in literature mainly define it as single 
objective one (with minimization of cost of a whole 
routing plan), with hard constraints (e.g. related to 
capacity of vehicles or time of delivery) and 
deterministic parameters (like travel time). 
However, decision makers (DMs) involved in the 
planning process (e.g. the owner or executive staff 
of a transportation company) usually know that there 
is more variability connected with parameters of 
such problems: travel times vary depending on 
circumstances, times of delivery may be 
renegotiated with customers. Therefore, even 
optimal solutions of the mentioned models may not 
be enough for DMs to make up their minds, because 
there are scarcely any options (variants) generated 
from these models which could be a basis for ‘what-
if’ analysis. Moreover, the optimal or nearly optimal 
solution might be regarded by DMs as a ‘magic’ 
one. Even if there are multiple solutions generated, 
they are related only to the defined objective 
function, constraints and parameters, so they do not 

reveal new possibilities to DMs, which could arise 
with slight changes to e.g. travel times and time 
windows. 

Some models of the VRP try to address the 
issues of changes to parameters of the problem by 
introducing a level of constraint satisfaction. The 
model developed by Zimmermann [11] allows to 
define flexible constraints with fuzzy values. The 
original objective is converted into an additional 
constraint with its upper limit being a fuzzy number 
called aspiration level. The new objective is to 
maximize satisfaction of all constraints. 

This model has major drawbacks: a decision 
maker may not understand the meaning of 
satisfaction value (it can be either a not fully 
satisfied constraint or not fully satisfied aspiration 
level). Also, the aspiration level has to be set in 
advance, forcing a DM to make a guess (potentially 
incorrect). 

In [10] the authors introduced soft time 
windows, the violations of which result in a penalty. 
Value of the penalty depends on the type of 
customer and is a component of the objective 
function. 
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The aforementioned models do not provide  
a DM with a set of alternatives. 

This drawback is not present in the model 
described in [8], which is a multiobjective one and 
allows constraints to be violated. One of the 
objectives is the weighted number of not fulfilled 
constraints. However, the extent to which they are 
violated is not measured. Due to this fact, the 
amount of violation may be either negligible or 
huge, thus unusable for a DM. 

Another aspect of real-world situations which is 
not addressed by these models is the uncertainty of 
travel times. There are models which try to handle 
this aspect, but they are usually limited to stochastic 
approaches, rich in strong assumptions 
(e.g. independency of travel times or the type of 
their distribution) [3]. 

This paper describes a new model for the VRP 
with time windows (VRPTW) [9]. On one hand, the 
model allows for generation of multiple alternatives 
and, on the other hand, provides means of measuring 
the level of constraints satisfaction. Additionally, in 
contrast to the stochastic approach, the fuzzy model 
of travel times is proposed. 

The purpose of this paper is to demonstrate that 
introduction of flexibility into constraints does not 
decrease the quality of results. Another goal is to 
show that the acceptance of small violations of 
constraints can lead to solutions with lower cost, 
which may be valuable to DMs. 

2. FUZZY VEHICLE ROUTING PROBLEM 

WITH TIME WINDOWS (FVRPTW) 

Let N be the set of customers. Each customer  
i has some demand (the amount of goods) and must 
be served within the time window [ei, li]. Customers 
are visited by vehicles from the set K, each having 
the capacity q. Some time is required to travel 
between a pair of customers. All vehicles start and 
end their travel in the same depot. The objective is 
to find a set of routes (i.e. the sequences of 
customers) with minimal cost, such that: 

each customer is placed on exactly one route 
the time at which the customer i is visited is 
between ei and li 
the sum of customers' demands on each route is 
not greater than q 

The above model assumes hard time windows. 
To allow small violation of time constraints, the 
time windows must be presented in a different way. 
Previous works ([1], [4]) show that fuzzy intervals 
are a good model to achieve this requirement. 

For the customer i his time window is fuzzified 
(see Fig. 1 for an example). Only the right part of 
the time window (i.e. the latest service time, li) is 
fuzzified, because the left part plays role only when 
the vehicle arrival takes place before the ei and has 
nothing to do with the customer's satisfaction. 

Formally, soft time window of customer i is 
represented by a fuzzy set of service times satisfying 

the customer, with its membership function i(t) 
equal to the level of customer's satisfaction when the 
service starts at time ti. 

The original time constraints are no longer 
present in the flexible model. Instead, the 
satisfaction levels assigned to time windows are part 
of solutions' quality. They constitute an additional 
objective: to minimize the global satisfaction level 
(i.e. the satisfaction level of least satisfied 
constraint). This makes the problem multiobjective. 

As mentioned in previous sections, the 
assumption that travel times are fixed numbers 
known a priori is very strong. Therefore, fuzzy 
travel times are introduced. Each travel time Ti is 
modeled as a 3-point fuzzy number. This 
representation requires least assumptions and is easy 
to build with a human expert, e.g. by asking him 
questions in the form: “What is the expected, 

smallest and greatest travel time between X and Y”. 

The arithmetic of fuzzy values is simple, 

compared to the one of stochastic variables, and the 

concept of satisfying flexible constraints with 

uncertain values is often used ([1]). An example of 

fuzzy time value satisfying flexible constraint is 

shown on Fig. 1. The concepts used here have roots 

in the possibility theory [2]. 

 
Fig. 1. Fulfillment of a flexible constraint by 

uncertain value 

3. THE PROPOSED ALGORITHM 

The model described above is solved by  

a multiobjective metaheuristic algorithm called 

Pareto Memetic Algorithm (PMA) [5]. Its goal is to 

find a set of approximately Pareto-optimal solutions. 

The algorithm uses a mechanism of scalarizing 

functions to drive the search in the direction of the 

Pareto-optimal set (Pareto set, PS). In this work the 

achievement scalarizing functions are used [5]. 

The main loop of the PMA, which starts right 

after generation of initial solutions by a randomized 

heuristic, is presented in Fig. . 

The general idea of this algorithm is to generate 

new approximately Pareto-optimal solutions by 

recombination of already found solutions which are 

good with respect to a randomly chosen scalarizing 

function. The offspring resulting from this 

recombination is then improved by a local search 

heuristic optimizing the same scalarizing function. 

The rationale behind this procedure is based on the 
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assumption that recombination of good solutions is 
likely to produce good starting points for local 
search. 

Fig. 2. Main loop of the PMA. s(z,…, ) stands for  

a scalarizing function value with weight vector 

for a solution with objective values z 

The Pareto Memetic Algorithm was adapted to 

the FVRPTW by means of problem-specific 

randomized heuristic procedure, local search and 

recombination operators. There is no explicit 

mutation operator defined. 

The randomized heuristic procedure generates 

solutions using the insertion method I1 described in 

[9], with parameter values drawn randomly with 

uniform probability. This heuristic was chosen 

because it generates good quality solutions. During 

construction of routes I1 requires that all hard 

constraints are met, so it had to be adjusted to the 

case of flexible time windows. If time constraints 

were removed totally, it could result in all initial 

solutions having satisfaction equal to zero, 

especially in problems with very tight time 

windows. Thus, the modified I1 heuristic requires 

that constraints are not fully violated (they have 

non-zero satisfaction level). 

The local search uses steepest approach to find 

the best neighbor of the current solution. The 

operators used to construct the neighborhood are 

moving a customer from one route to any position 

on another one or switching two customers between 

routes. 

Two recombination operators were implemented: 

the route-based crossover (RBX) [7] and the 

common-edges-preserving crossover (CEPX) [6]. 

RBX generates an offspring by first copying  

a randomly chosen set of routes from one parent. 

Then, the offspring is completed with routes from 

the other parent, omitting the customers already 

inserted when necessary. Consequently, RBX 

contains a random component. CEPX is, on the 

contrary, a fully deterministic crossover. Routes of 

its offspring are composed only of edges which are 

common to both parents. 

The PMA was implemented in Java. 

4. COMPUTATIONAL EXPERIMENT 

In order to generate approximations of Pareto 

sets and to assess the efficiency of the proposed 

algorithm (especially of the two crossover operators) 

a computational experiment was designed. Well-

known Solomon’s instances of VRPTW [9] were 

used. From the whole set of Solomon’s instances we 

selected 3 groups (called R, C, RC in short) with the 

largest number of customers (100); 56 instances in 

total. All these instances were augmented with 

information about fuzzy time windows and travel 

times. Each time window was enlarged by 10% of 

its original width, with customer’s satisfaction 

decreasing linearly to zero. Travel times were 

fuzzyfied by 5% in either direction (compare Fig. 1). 

Two versions of the PMA were run: one with 

RBX only, the other with CEPX. They were 

executed 15 times for each instance, 420 seconds 

each run, on PCs with Intel Pentium 4 processor 

3.2 GHz and 1GB RAM, running Windows XP. 

Evaluation of results of a multiobjective 

algorithm requires that specialized measures of 

quality of approximations of PS are employed. In 

this paper two such measures are used: coverage 

C(A,B) of approximation A of PS by approximation 

B [12] and the average best value of the weighted 

Tchebycheff scalarizing function R(A) for one 

approximation A [5].  

C(A,B) is a percentage of solutions in A which 

are dominated (covered) by some solutions from B. 

It is normalized and not symmetric. C(A,B)=1 

indicates that A is completely dominated by B. If 

C(A,B)=0 then the approximations A and B of PS 

are incomparable.  

R(A), shows a quality of an approximation A 

with respect to a reference point, usually being an 

ideal point. This measure is nonnegative and not 

normalized. The closer it is to 0, the better the 

approximation A is (being generally closer to the 

ideal point). 

Table 1 presents values of the coverage measure 

C for the two employed algorithms. Values of the R 

measure are shown in Fig. 3. 

Table 1. Average values of the C measure between 

approximations generated by two algorithms in 

groups of instances 

Group of 

instances 
C(RBX,CEPX) C(CEPX,RBX) 

C 16,7% 63,2%

R 0,8% 52,9%

RC 0,8% 53,0%

All 5,6% 56,0%
 

As can be seen from the Table 1 and Fig. 4, the 

solutions obtained from the computations using 

repeat

 Draw at random a weight wector  

From the current set CS of solutions draw with 

uniform probability a sample T of solutions 

Recombine the best and the second best solution 

on s(z,…, ) from T obtaining x1 

Apply a local search heuristic optimizing s(z,…,

) to x1 obtaining x1’ 

If x1’ is better on s(z,…, ) then the second best 

solution in T then 

  Add x1’ to the current set CS of solutions 

Update the set of approximately Pareto-optimal 

solutions with x1’ 

until the stopping criterion is met 
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CEPX operator are usually dominated by the 
solutions resulting from computations using RBX. It 
may be due to the fact that in the case of CEPX the 
whole procedure of recombination and local search 
is deterministic. Thus, the only random component 
of the algorithm determining the structure of  
solutions is randomized initial heuristic, which 
might be not enough to achieve diversified 
solutions. 

One approximation of a Pareto front which we 
obtained from the experiment is shown in Fig. 4. 
The horizontal line represents the cost of the optimal 
solution to the presented problem. 

 

Fig. 4. An example of a Pareto front approximation 
for instance R101 

In this figure it can be seen that the cost of  
a solution can be greatly lowered in exchange for  
a satisfaction decrease. This fact gives a DM  
a chance to choose between two interesting, but 
highly different solutions: one with reasonable cost 
and fully satisfied constraints, the other with smaller 
satisfaction, but less expensive The knowledge 
about such solutions can be the basis for 
renegotiation of time windows with customers. 

5. CONCLUSIONS AND FURTHER 

RESEARCH

The constructed FVRPTW is valuable if a DM 
should have the possibility to choose a solution from 
a set o good and diversified ones. Using the 
proposed approach, a DM is able to choose time 

windows, which, when altered, can result in much 
less expensive routes. 

The comparison of crossover operators shows 
that there is a need for randomness in the PMA: the 
use of randomized RBX operator lead to better 
results than the use of deterministic CPEX. 

The main direction for further research is the 
improvement of heuristics and operators, which are 
suitable to the model of flexible constraints. 
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Fig. 3. Values of the R measure for approximations 
of PS generated by different algorithms 
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