Beata ŚWIECZKO-ŻUREK, Andrzej ZIELIŃSKI Politechnika Gdańska

PRZYCZYNY PĘKANIA WSPOMAGANEGO PRZEZ WODÓR ROZDZIELACZY PALIWA W SILNIKACH OKRĘTOWYCH

Słowa kluczowe

Korozja naprężeniowa, oleje silnikowe, paliwa ciekłe, stale stopowe, zmęczenie.

Streszczenie

Wykonano badania skłonności stali 26H2MF i 34HNM do niszczenia środowiskowego przy rozciąganiu próbek ze stałą małą prędkością 10^{-6} s⁻¹, przy obciążeniu stałym dla próbek z karbem oraz przy obciążeniu cyklicznie zmiennym w środowiskach paliwa kotłowego i przepracowanego oleju mineralnego. Obserwowano szybkie pękanie stali w badaniach zmęczeniowych, niewielką utratę plastyczności w próbach statycznego rozciągania oraz brak efektu w próbie stałego obciążenia.

Wprowadzenie

Stale stopowe 26H2MF i 34HNM są stosowane na konstrukcje okrętowe różnego rodzaju, w tym na rozdzielacze paliwa. Silniki okrętowe pracują w warunkach oddziaływania dużych naprężeń mechanicznych i agresywnego środowiska. Mogą one ulegać zniszczeniu w wyniku procesów takich, jak korozja naprężeniowa lub zmęczenie korozyjne [1, 2].

1. Metodyka badań

Badania wykonano na stalach 26H2MF i 34HNM o składach podanych w tabelach 1 i 2, w przepracowanym oleju silnikowym (Lotos Diesel 15W/40), paliwie kotłowym (o zawartości 2,3% S, bezwodnym) i glicerynie po uprzedniej 30-dniowej ekspozycji. Próby rozciągania i ekspozycja wstępna przebiegały w stałej temperaturze 135°C dla paliwa kotłowego oraz 80°C dla oleju mineralnego.

Źródło	С	Mn	Si	P _{max}	S _{max}	Cr	Ni _{max}	Cu _{max}	Мо	V
Wg PN	0,22÷0,3	0,3÷0,6	0,3÷0,5	0,035	0,035	1,5÷1,8	0,3	0,25	0,6÷0,8	0,2÷0,3
Wg analizy	0,30	0,431	0,45	0,007	0,0006	1,61	0,16	0,15	0,72	0,27

Tabela 1. Skład chemiczny stali 26H2MF

Tabela 2. Skład chemiczny stali 34HNM

Źródło	С	Mn	Si	P _{max}	S _{max}	Cr	Ni	Cu _{max}	Мо	V_{max}
Wg PN	0,32 ÷0,4	0,4 : 0,7	0,17÷0,37	0,035	0,035	1,3÷1,7	1,3÷1,7	0,3	0,15÷0,25	0,05
Wg analizy Wytop A	0,33	0,54	0,29	0,001	0,003	1,4	1,41	0,25	0,165	0,008
Wg analizy Wytop B	0,27	0,37	0,21	0,003	0,02	1,53	1,50	0,34	0,15	0,007

Parametry obróbki cieplnej pokazano w tabelach 3 i 4. Zostały one dobrane na podstawie norm tak, aby otrzymać możliwie odmienną mikrostrukturę stali. Taki dobór wynikał z założenia, iż obróbka cieplna stosunkowo grubych elementów silnika mogła doprowadzić do uzyskania różnych struktur w rdzeniu i na powierzchni.

Tabela 3. Parametry obróbki cieplnej stali 26H2MF

Gatunek stali	Oznaczenie próbki	Rodzaje zabiegów cieplnych	Temperatura [⁰ C]	Czas wygrzewania [min]	Stosowany ośrodek chłodzący
		normalizowanie	970	20	powietrze
26H2MF	26NO700	normalizowanie	940	20	powietrze
	2010700	odpuszczanie	700	120	powietrze
	26NU0600	normalizowanie	970	20	powietrze
		normalizowanie	940	20	powietrze
	201100000	hartowanie	880	20	olej
		odpuszczanie	600	120	powietrze

Gatunek stali	Oznaczenie próbki	Rodzaje zabiegów cieplnych	Temperatura [⁰ C]	Czas wygrzewania [min]	Stosowany ośrodek chłodzący
34HNM	34NHO680	normalizowanie hartowanie odpuszczanie	870 860 680	20 20 120	powietrze olej olej
Wytop A	34NHO560	normalizowanie hartowanie odpuszczanie	870 860 560	20 20 120	powietrze olej olej
34HNM Wytop B	34NO700	normalizowanie normalizowanie odpuszczanie	970 940 700	20 20 120	powietrze powietrze powietrze

Tabela 4. Parametry obróbki cieplnej stali 34HNM

2. Wyniki badań przy małej prędkości odkształcenia

Badania wykonano na specjalnym stanowisku umożliwiającym rozciąganie próbek ze stałą małą prędkością. Zastosowano względną prędkość rozciągania 10^{-6} s⁻¹, przy której degradacja w wyniku procesu pękania wspomaganego przez wodór jest z reguły największa [3].

Mierzono zmiany wytrzymałości na rozciąganie, energii zniszczenia, wydłużenia i przewężenia. Stanowisko do badań pokazano na rysunku 1.

Rys. 1. Stanowisko do prób rozciągania ze stałą małą prędkością odkształcenia w środowisku korozyjnym

Wyniki z przeprowadzonych badań przedstawiono na rysunkach 2–4, jednak wyłącznie dla najbardziej czułego parametru, tj. przewężenia (jako średnie z trzech pomiarów). W przypadku innych mierzonych właściwości, jak: energia zniszczenia, wytrzymałość na rozciąganie i wydłużenie, wpływ środowiska był mało zauważalny.

Rys. 2. Przewężenie stali 26H2MF po różnej obróbce cieplnej, po badaniach w paliwie kotłowym (F) i glicerynie (G)

Rys. 3. Przewężenie stali 34HNM po różnej obróbce cieplnej, po badaniach w paliwie kotłowym (F) i glicerynie (G)

Rys. 4. Przewężenie stali 26H2MF po normalizowaniu, hartowaniu i odpuszczaniu w temperaturze 600°C, eksponowanej w przepracowanym oleju mineralnym (R2U600) i glicerynie (T600-G)

3. Wyniki badań mechaniczno-korozyjnych przy stałym obciążeniu

Badania wykonano na specjalnym stanowisku umożliwiającym stałe obciążenie próbki. Zastosowano obciążenia wynoszące: dla stali 34HNM 0,90F_m, $0,93F_m$, $0,96F_m$, zaś dla stali 26H2MF 0,94F_m, $0,96F_m$, $0,98F_m$, dzie F_m – siła zrywająca. Dla każdej z wartości obciążenia badano po 2 próbki. W żadnym z testów nie stwierdzono zerwania próbki w czasie 200 h.

4. Wyniki badań przy obciążeniu cyklicznie zmiennym

Badania wykonywano w cyklu jednostronnego rozciągania przy względnej prędkości rozciągania 10^{-2} s⁻¹. Wielkością sterującą było odkształcenie, którego górną wartością było wydłużenie względne 1,0%, zaś dolną 0% (R = 0). Częstotliwość zmian kierunku odkształcenia wynosiła ok. 0,1 Hz. Wartościami mierzonymi były: liczba cykli do zniszczenia i czas do zniszczenia.

Badano stal 34HNM z dwóch różnych wytopów A i B. Wyniki badań pokazano w tabeli 5. Ilustrują one, że w żadnym z przypadków stal badana w glicerynie nie pękała szybciej, niż stal badana w paliwie, co dowodzi bezsprzecznie istotnego wpływu środowiska na liczbę cykli do zniszczenia w próbie zmęczenia niskocyklowego.

Wytop	Obróbka cieplna	Środowisko	Liczba cykli do zniszczenia	
	N 870 ⁰ C	paliwo	791	
А	H 860 ⁰ C	gliceryna	17171	
	O 560 ⁰ C	paliwo	2871	
		gliceryna	16981	
В	N I 970 ⁰ C	paliwo	13911	
	N II 940 ⁰ C	gliceryna	121541	
	O 700 ⁰ C	paliwo	112701	
		gliceryna	248731	

Tabela 5. Wyniki badań próby mechaniczno-korozyjnej przy obciążeniu zmiennym dla stali 34HNM

5. Dyskusja

W trakcie próby odkształcenia z małą prędkością zostaje przekroczona granica plastyczności, wzrasta liczba lokalnie odkształconych plastycznie mikroobszarów i gęstość dyslokacji, powiększają się niespójności na powierzchniach międzyfazowych. Wodór wprowadzony uprzednio do stali w trakcie długotrwałej ekspozycji oddziałuje silnie z nowo powstającymi defektami mogąc powodować lokalne obniżenie granicy plastyczności. Otrzymane wyniki wskazują, że w przypadkach nawet wysokich stężeń wodoru sieciowego można oczekiwać pojawienia się degradacji wodorowej dopiero wtedy, gdy metal jest odkształcany plastycznie. Obecne wyniki zgodne są w pełni z modelem dyslokacyjnym niszczenia wodorowego.

Badania mechaniczno-korozyjne wykonywane przy stałym obciążeniu dość bliskim, ale niższym od wytrzymałości na rozciąganie nie wykazały istotnego wpływu wodoru absorbowanego w trakcie ekspozycji w przepracowanym oleju mineralnym. Wynik taki przy stosowaniu próbek gładkich nie byłby zaskoczeniem, bowiem brak oznak degradacji wodorowej przy naprężeniu równym 90% granicy plastyczności obserwowano wcześniej [4]. Jednakże w obecnych badaniach stosowano próbki z karbem, przy którym pojawia się spiętrzenie naprężeń trójosiowych. W takim przypadku występuje dyfuzja wodoru do obszaru karbu, co może wywołać lokalny wzrost stężenia wodoru i inicjację pęknięć [5]. Brak takiego efektu ponownie potwierdza model dyslokacyjny pękania wodorowego, neguje natomiast możliwość dekohezji sieci.

W próbie zmęczeniowej niskocyklowej liczba defektów nie była tak duża, ponieważ górna amplituda odkształcenia nie osiągała znacznej wartości. W takich warunkach wodór ruchliwy, nawet w niewielkich stężeniach, był w stanie dotrzeć do obszarów odkształconych plastycznie i być skutecznie wiązany przez utworzone defekty struktury, powodując w efekcie szybki wzrost pęknięcia.

Wnioski

- Środowisko ciekłych węglowodorów technicznych może wywierać istotny wpływ na pękanie i plastyczność stali stopowych, co można przypisać tworzeniu i wnikaniu wodoru do wnętrza stali.
- W przypadku paliwa kotłowego widoczny spadek plastyczności stali 34HNM można przypisać strukturze niskoodpuszczonego bainitu, bardziej wrażliwej na niszczenie wodorowe.
- 3. Znaczną wrażliwość stali 26H2MF na degradację wodorową w oleju mineralnym można wiązać z silną absorpcją wodoru.
- 4. Pochłonięty wodór nie powoduje przedwczesnego zniszczenia badanych stali stopowych, które nie uległy odkształceniu plastycznemu.
- 5. Silny wpływ wodoru na zachowanie się stali 34HNM poddanej działaniu naprężeń zmiennych w obszarze plastycznym (zmęczeniu niskocyklowemu) jest przypuszczalnie spowodowany istotnym oddziaływaniem wodoru z tworzącymi się defektami struktury.

Bibliografia

- 1. Wodorowe i korozyjne niszczenie metali. Flis J. [red.], PWN, Warszawa, 1979.
- 2. Zieliński A., Ćwiek J., Olive J.M.: Methods for characterizing hydrogen degradation of materials. Advances in Materials Science. 3, 2002, s. 5–11.
- Korozja metali i stopów. Badanie korozji naprężeniowej. Próba odkształcania z małą prędkością. PN-EN ISO 7539-7.
- Łunarska E.: Hydrogen-induced degradation of low-carbon steel. [W] Hydrogen Degradation of Ferrous Alloys, Noyes Publ., Park Ridge, USA, 1985, s. 712–736.
- 5. Zieliński A., Domżalicki P., Birn J., Poniewierska C.: Hydrogen degradation of ship steels. Marine Techn. Trans. 9, 1998, 219–230.

Recenzent: Lech STARCZEWSKI

Estimation of the risk of hydrogen-induced cracking of fuel separators of ship diesel engines

Summary

The susceptibility of the 26H2MF and 34HNM steels to environmental degradation has been investigated at tension at a strain rate 10^{-6} s⁻¹, under constant load on pre-notched specimens, and at fatigue strains in boiler fuel and used mineral oil. The faster cracking of steels in fatigue tests, a small plasticity loss at static tension and no effect at constant load tests have been observed.