PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wieloskalowe modelowanie rzeźby terenu. Cz. 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Multiscale modelling of relief. Part 2
Języki publikacji
PL
Abstrakty
PL
W drugiej części artykułu omówiono wybrane koncepcje generalizacji numerycznego modelu rzeźby terenu, ze szczególnym uwzględnieniem metody wagowanej filtracji lokalnej opartej na uogólnieniu linii strukturalnych. Zaproponowano także koncepcję budowy wieloskalowego NMT o strukturze hierarchicznej, umożliwiającą monoskalową reprezentację modelu rzeźby na określonym poziomie uogólnienia.
EN
The concept of hierarchical model of relief is a logical conclusion of the idea of a multi representation topographic database. It permits a combined analysis of all the components of the environment and uncovers new possibilities in preserving the integrity of spatial constraints between the model of terrain and other thematic layers (primarily river network). It is possible due to, among other factors, defining of spatial relations between particular objects and object classes. It also provides a new way of looking at the process of relief generalization understood as an approximation of the relief model preserving topological relations, and not as a simplification of contour lines. The basic feature of the generalization of relief should be the preservation of its structure (morphological skeleton). What seems important for the construction of multi scale DTM is not only a hierarchical approach to relief modelling but also the method of approximation of source data. Simple algorithms of DTM generalization such as the conversion of TIN model into regular GRID structure of certain spatial resolution and the application of global filtration allow for a relatively low reduction of complexity of the source model. The proposed concept of hierarchical model preparation through iterative elimination of points from the data source combines elements of local filtration and heuristic approach. In the conducted research it was assumed, that while building the hierarchical structure of DTM model one should define relief structural lines and assign to them appropriate numeric weights. The analysis bases on the division of source data of the model into structural and mass points. In the process of generalization the points are removed according to the combined evaluation of several criteria: their vertical significance (established locally), their density (horizontal significance), and for structural points also by the weight of structural lines and local curvature of those line (established horizontally as well as vertically). The selection of relevance of particular criteria is fully parameterized, permitting a free assignment of weight factors. Hierarchical (multi scale) model of relief can be adapted to the scale of presentation chosen by the user, while retaining the relief structure relevant for that level of generalization. Suggested algorithms make it possible to preserve significant topological relations between structural elements of relief.
Rocznik
Strony
267--273
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Zakład Kartografii Politechniki Warszawskiej
autor
  • Zakład Kartografii Politechniki Warszawskiej
Bibliografia
  • 1. Brassel K., Weibel R., 1988, A review and conceptual framework of automated map generalization, „Intern. Journal of Geogr. Information Systems" Vol. 2, no. 3. s. 229-244.
  • 2. Danovaro E., De Floriani L., Magilio P., Mesmoudi M.M., Puppo E., 2003, Morphology-driven simplification and multiresolution modeling of terrain. W: Proceedings ACM-GIS 2003. The 11th International Symposium on Advances in Geographic Information Systems. Editors E. Hoel and P. Rigaux. ACM Press s. 63-70. www.disi.unige.it/person/DeflorianiL/publications.html
  • 3. De Floriani; L., Magillo P., 2002. Multiresolution mesh representation: Models and data structures. W: Mulitiresolution in geometric modeling. Editors M. Floater and A. Iske and E. Quak. Springer-Verlag. s. 363-418. www.disi.unige.it/person/Defiorianil/publications.html
  • 4. Gotlib D., Iwaniak A., Olszewski R., 2005. Jedna referencyjna baza danych. Czy to możliwe? “Geodeta” Nr 1 (116). s. 3-11.
  • 5. Grünreich D., 1995, Development of computer-assisted generalization on the basis of cartographic model theory. W: G IS and generalization – methodology and practice. London: Taylor & Francis, s. 47-55.
  • 6. Heller M., 1990, Triangulation algorithms for adaptive terrain modeling. W: Symposium on Spatial Data Handling. Zurich, Vol. 1. s. 163-174.
  • 7. Kochman M., Olszewski R., 2005. Wieloskalowe modelowanie rzeźby terenu. Część I, „Polski Przegl. Kartogr." T. 37, nr 3. s. 171-184.
  • 8. Makowski A. (red.). 2004, System informacji topograficznej kraju - teoretyczne i metodyczne opracowanie koncepcyjne. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • 9. Olszewski R., 2005, Utilisation of artificial intelligence methods and neurofuzzy algorithms in the process of digital terrain mode! generalization. W: XXII ICA Conference. La Coruna.
  • 10. Sheeren D., 2003, Spatial databases integration: interpretation of multiple representaions by using machine learning techniques. W: 21st. International Cartographic Conference. Durban.
  • 11. Smale S.,1960, Morse inequalities for dynamical system. “Bulletin of American Mathematical Society” Vol. 66. s. 43- 49.
  • 12. Weibel R., 1992. Models and experiments for adaptive computer-assisted terrain generalization. „Cartography and Geogr. Information Systems" Vol. 19. no. 3, s. 133-153.
  • 13. Wilson J. P., Gallant J. C., 2000. Terrain analysis. New York: John Wiley & Sons.
  • 14. Wytyczne techniczne. Beza Danych Topograficznych. 2003. Warszawa: Główny Urząd Geodezji i Kartografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0014-0036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.