PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of image analysis methods for vascular blood flow assessment with angiographic imaging

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wykorzystanie przetwarzania obrazu jako metody analizy naczyń krwionośnych wraz z obrazami anglograficznymi
Konferencja
PELINCEC International Workshop on "Image Processing in Industrial Information Technology- Methods and Applications" Warsaw, 14-15.10.2004
Języki publikacji
EN
Abstrakty
EN
The Department of Angiology of Jagiellonian University did research on the treatment of critical limb ischemia with bone-marrow transplantation. Extensive tests of objective and subjective examinations were conducted to evaluate the efficacy of the treatment. One of these test procedures - the analysis of vascular net density in angiographic imaging was supported by quantitative image analysis methods. Angiographic videos made before and after intervention were converted to image sequences. Analyzed images revealed translation of blood vessels in XY plane and differences in brightness. The normalized cross correlation method was used to find the translation vector. The developed image processing algorithm involves initial filtration, top-hat operation, automatic threshold and final filtration of all angiographical images. Volume increment of blood flow per time unit and the length of blood vessels were duly analysed on the segmented images. Further investigations of many patients' angiographical videos, with different parts of the blood system are still required to fully verify the adequacy of the algorithm as a tool supporting the doctor's decisions.
PL
Jednym z kryteriów oceny terapii choroby niedokrwiennej kończyn dolnych jest analiza gęstości netto naczyń krwionośnych w obrazach angiograficznych przy pomocy ilościowej analizy obrazów. Angiograficzne filmy wideo wykonane przed i po interwencji zostały zamienione na postać sekwencji obrazów, a następnie poddane obróbce cyfrowej. Przeprowadzono analizę wzrostu objętości przepływającej krwi w jednostce czasu oraz długości naczynia na podstawie segmentowanych obrazów.
Słowa kluczowe
Rocznik
Strony
76--78
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, PL 30-059 Krakow
  • Division of Angiology, II Department of Internal Medicine, School of Medicine Jagiellonian University, Skawinska 8, 31-066 Cracow, Poland
Bibliografia
  • [1] Brown B.G., Bolson E., Frimer M., Dodge H.T., Quantitative coronary arteriography, Circulation, vol. 55 (1977), no. 2, pp. 329–337,.
  • [2] Fleagle S.R., Johnson M.R., Wilbricht C.J., Skorton D.J., Wilson R.F., White,M.L.Marcus C.W., Collins S.M., Automated analysis of coronary arterial morphology in cineangiograms: geometric and physiologic validation in humans, IEEE Trans. Med. Imaging, vol. 8, (1989), no. 4, pp. 387–400,.
  • [3] Young A.A., Hunter P.J., Smaill B.H., Estimation of epicardial strain using the motions of coronary bifurcations in biplane cineangiography, IEEE Trans. Biomed. Eng., vol. 39 (1992), no. 5, pp. 526–531,.
  • [4] Schrijver M., de Bont S., Slump C.H., Storm C.J., Densitometric determination of the flow distribution in the bifurcation of the left coronary artery, in Medical Imaging 1999: Physiology and Function from Multidimensional Images, C.T. Chen and A.V. Clough, Eds. SPIE, vol. 3660, (1999), pp. 395–406.
  • [5] Csizmadia N.P., Slump C.H., Lubbers A.G.P., Schrijver M., Storm C.J., Digital densitometric determination of relative coronary flow distributions, Med. Biol. Eng. Comput., vol. 39, (2001), pp. 303–309.
  • [6] Haude M., Caspari G., Baumgart D., Ehring T., Schulz R., Roth T., Koch L., Erbel R., Spiller P., Heusch G., X-ray densitometry for the measurement of regional myocardial perfusion, Basic. Res. Card., vol. 95, (2000), pp. 261–2000.
  • [7] Schindler T.H., Magosaki N., Jeserich M., Oser U., Krause, Fischer R., Moser E., Nitzsche E., Zehender M., Just U. H. Solzbach, Fusion imaging: combined visualization of 3D reconstructed coronary artery tree and 3D myocardial scintigraphic image in coronary artery disease, Int. J. Card. Imaging, vol. 15, (1999), pp. 357–368.
  • [8] Parker D.L., Pope D.L., van Bree R., Marshall H.W., Threedimensional reconstruction of moving arterial beds from digital subtraction angiography, Comput. Biomed. Res., vol. 20, (1987), pp. 166–185.
  • [9] Wahle A., Wellnhofer E., Mugaragu I., Sauer H.U., Oswald H., Fleck E., Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms, IEEE Trans. Med. Imaging, vol. 14, (1995), pp. 230–241.
  • [10] Klein J.L., Hoff J.G., Peifer J.W., Folks R., Cooke C.D., King III S.B., Garcia E.V., A quantitative evaluation of the three dimensional reconstruction of patients’ coronary arteries, Int. J. Card. Imaging, vol. 14, (1995), pp. 75–87.
  • [11] Hulzebosch A.A., Slump C.H., Viergever M.A., Threedimensional reconstruction of stenosed coronary artery segments with assessment of the flow impedance, Int. J. Card. Imaging, vol. 5, (1990), no. 2-3, pp. 135–143.
  • [12] Cothren R.M., Shekhar R., Tuzcu E.M., Nissen S.E., Cornhill J.F., Vince D.G., Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and biplane angiography, Int. J. Card. Imaging, vol. 16, (2000), pp. 69–85.
  • [13] Molina C., Prause G., Radeva P., Sonka M., 3-D catheter path reconstruction from biplane angiograms, in Medical Imaging 1998: Image Processing, San Diego, California, SPIE, vol. 3338, (1998), pp. 504–512.
  • [14] Wankling P.F., Perry R.A., Seth A., Hunt A.C., Escaned X., Newell J.A., Shiu M.F., An objective computer system for the quantification of artery stenoses, Int. J. Card. Imaging, vol. 5, (1990), no. 2-3, pp. 85–92.
  • [15] Buchi M., Hess O.M., Kirkeeide R.L., Suter T., Muser M.,. Osenberg H.P, Niederer P., Anliker M., Gould K.L., Krayenb¨uhl H.P., Validation of a new automatic system for biplane quantitative coronary arteriography, Int. J. Card. Imaging, vol. 5, (1990), no. 2-3, pp. 93–103.
  • [16] Papadimitriou D.V., Dennis T.J., Stereo disparity analysis using phase correlation, Electronic Letters, Vol. 30, (1994), No. 18.
  • [17] Kanade T., Okutomi M., Nakahara T., A Multiple-baseline Stereo Method, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.15, no.4, (1993).
  • [18] Martin J., Crowley J.L., Experimental comparison of correlation techniques, In Proc. International Conf. on Intelligent Autonomous Systems, 1995.
  • [19] Meyer F., Iterative image transformation for an automatic screening of cervical cancer J. Histochem. Cytochem. 27, (1979), 128-135.
  • [20] Otsu N., A Threshold Selection Method from Gray-Level Histograms, In IEEE Transactions on Systems, Man, Cybernetics, 9 (1), (1979), 62-69.
  • [21] Serra J., Image analysis and mathematical Morphology, Academic Press, (1982).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAR0-0008-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.