Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We give a full description of the dynamics of the Abel equation [formula] for some special complex valued ƒ. We also prove the existence of at least three periodic solutions for equations of the form [formula] for odd n ≥ 5.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
175--189
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
- Jagiellonian University, Faculty of Mathematics and Computer Science, Department of Applied Mathematics, ul. Łojasiewicza 6, 30-348 Kraków, Poland, pawel.wilczynski@yahoo.pl
Bibliografia
- [1] J. Campos, Mobius transformations and periodic solutions of complex Riccati equations. Bull. London Math. Soc. 29 (1997) 2, 205-215.
- [2] A. Lins Neto, On the number of solutions of the equation dx/dt = ^2"=0 cij{t)x\ 0 < t < 1, for which x(0) = x(l), Invent. Math. 59 (1980) 1, 67-76.
- [3] A.A. Panov, Variety of Poincare mappings for cubic equations with variable coefficients. Funktsional. Anal, i Prilozhen. 33 (1999) 4, 84-88.
- [4] P. Wilczynski, Planar nonautonomous polynomial equations III. Zeroes of the vector field. accepted in Topol. Methods Nonlinear Anal.
- [5] P. Wilczynski, Periodic solutions of polynomial planar nonautonomous equations, Ital. J. Pure Appl. Math. 21 (2007), 235-250.
- [6] P. Wilczynski, Planar nonautonomous polynomial equations: the Riccati equation. J. Differential Equations 244 (2008) 6, 1304-1328.
- [7] P. Wilczynski, Planar nonautonomous polynomial equations. II. Coinciding sectors. J. Differential Equations 246 (2009) 7, 2762-2787.
- [8] H. Zoladek. Periodic planar systems without periodic solutions, Qual. Theory Dyn. Syst. 2 (2001) 1, 45-60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0009-0016