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Abstract. We give a full description of the dynamics of the Abel equation ż = z3 + f(t)
for some special complex valued f . We also prove the existence of at least three periodic
solutions for equations of the form ż = zn + f(t) for odd n ≥ 5.
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1. INTRODUCTION

The dynamics of the nonautonomous planar polynomial equation

ż =

n∑
j=0

aj(t)z
j . (1.1)

may be quite complicated (see e.g. [2,3,8]). The only exception is the Riccati equation
(n = 2), where the Poincaré map is just a Möbius transformation [1]. The present
paper is a continuation of [4–7] and is devoted to the full description of the dynamics
of the Abel equation of the form

ż = v(t, z) = z3 + f(t), (1.2)

where f ∈ C(R,C) is T -periodic. We consider only the simplest case where the equa-
tion has three periodic solutions and every other solution is heteroclinic to the periodic
ones or blows up.

The method we use is quite geometrical. We investigate the behaviour of the
vector field on the boundary of some special sets. Then by the Denjoy–Wolff fixed
point theorem we obtain the existence of a periodic solution which is asymptotically
stable or asymptotically unstable. The shape of the sets has a great influence on
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the final result, i.e. the range of coefficient f which fullfils assumptions of obtained
theorems. Thus it seems that presented results may be strengtened but probably with
different methods.

We also consider the equation

ż = u(t, z) = zn + f(t), (1.3)

where n > 3 is odd. We adapt the method from the Abel case and obtain the existence
of at least three periodic solutions. Unfortunately, the sectors we investigate do not
cover the whole plain, so we are not able to describe the whole dynamics.

The paper is organised as follows. In Section 2 we give definitions and introduce
notion. Later we investigate the Abel equation. Section 4 is devoted to the higher
order polynomials.

2. DEFINITIONS

2.1. PROCESSES

Let X be a topological space and Ω ⊂ R×X × R be an open set.
By a local process on X we mean a continuous map ϕ : Ω −→ X, such that three

conditions are satisfied:

(i) I(σ,x) = {t ∈ R : (σ, x, t) ∈ Ω} is an open interval containing 0, for every σ ∈ R
and x ∈ X,

(ii) ϕ(σ, ·, 0) = idX , for every σ ∈ R,
(iii) ϕ(σ, x, s + t) = ϕ(σ + s, ϕ(σ, x, s), t), for every x ∈ X, σ ∈ R and s, t ∈ R such

that s ∈ I(σ,x) and t ∈ I(σ+s,ϕ(σ,x,s)).

For abbreviation, we write ϕ(σ,t)(x) instead of ϕ(σ, x, t).
Let M be a smooth manifold and let v : R ×M −→ TM be a time-dependent

vector field. We assume that v is so regular that for every (t0, x0) ∈ R×M the Cauchy
problem

ẋ = v(t, x), (2.1)
x(t0) = x0 (2.2)

has a unique solution. Then equation (2.1) generates a local process ϕ on X by
ϕ(t0,t)(x0) = x(t0, x0, t+ t0), where x(t0, x0, ·) is the solution of the Cauchy problem
(2.1), (2.2).

Let T be a positive number. In the sequel T denotes the period. We assume that
v is T -periodic in t. It follows that the local process ϕ is T -periodic, i.e.,

ϕ(σ+T,t) = ϕ(σ,t) for all σ, t ∈ R,

hence there is a one-to-one correspondence between T -periodic solutions of (2.1) and
fixed points of the Poincaré map ϕ(0,T ).
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2.2. BASIC NOTIONS

Let g : M −→ M and n ∈ N. We denote by gn the n-th iterate of g, and by g−n the
n-th iterate of g−1 (if exists).

We say that the point z0 is attracting (repelling) for g in the set W ⊂ M if the
equality limn→∞ gn(w) = z0 (limn→∞ g−n(w) = z0) holds for every w ∈W (i.e. every
w is attracted (repelled) by z0).

We call a T -periodic solution of (2.1) attracting (repelling) in the set W ⊂ M if
the corresponding fixed point of the Poincaré map ϕ(0,T ) is attracting (repelling) in
the set W .

Let −∞ ≤ α < ω ≤ ∞ and s : (α, ω) −→ C be a full solution of (1.1). We call s
forward blowing up (shortly f.b.) or backward blowing up (b.b.) if ω <∞ or α > −∞,
respectively. If −∞ < α < ω < ∞, then the solution is called backward forward
blowing up (b.f.b.).

We define the sector

S(α, β) = {z ∈ C : α < Arg(z) < β},

where −π ≤ α < β ≤ π. Moreover, for 0 < α ≤ π we define S(α) = S(−α, α) and Ŝ(α)
to be a set symmetric with respect to the origin to sector S(α). Obviously, 0 6∈ S(α, β).

Let us recall that the inner product of two vectors a, b ∈ C is given by the formula
〈a, b〉 = Re(ab) = Re(ab).

3. THE ABEL EQUATION

3.1. MAIN RESULT

In the present section we state the main theorem of the paper.

Theorem 3.1. Let T > 0 and f ∈ C(R,C), f 6≡ 0 be T -periodic. We write

R = min {−Re(f(t)) : t ∈ R} ,
M = max {|Im(f(t))| : t ∈ R} .

If

M ≤ 1 +
√

33

6
√

6 +
√

33
R, (3.1)

then equation (1.2) has three T -periodic solutions. One of them is asymptotically
unstable and two other are asymptotically stable. Every other solution is heteroclinic
between them or blows up. There are no b.f.b. solutions.

Proof. By (3.1), one gets f(R) ⊂ Ŝ
(
π
2

)
. Thus, by [7, Theorem 4], the equation (1.2)

has exactly one T -periodic solution ξ in S
(
π
2

)
. It is asymptotically unstable and
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repelling in the whole S
(
π
2

)
. Every other solution staying inside S

(
π
2

)
for some time

is f.b. solution or leaves this set through the imaginary axis and enters the set Ŝ
(
π
2

)
.

To finish the proof, it is enough to show that:

— there is exactly one T -periodic solution χ inside the set S
(
π
2 , π

)
, it is asymptoti-

cally stable,
— there is exactly one T -periodic solution ν inside the set S

(
−π,−π2

)
, it is asymp-

totically stable,
— every other solution staying inside Ŝ

(
π
2

)
for some time is attracted by χ or ν or

is f.b.,
— every solution which is attracted by χ or ν is heteroclinic between ξ and χ or

between ξ and ν, respectively, or is a b.b. solution.

We do that in two steps. First of all we define two subsets W and Z of Ŝ
(
π
2

)
which contains asymptotically stable T -periodic solutions. Then we investigate the
behaviour of the vector field v outside W and Z.

I. We assume that f(t) ∈ C \ R for some t ∈ R, i.e.

M > 0 (3.2)

holds. Write

k =

√
6 +
√

33,

p =
7 +
√

33

4
.

Thus there exists c > 0 such that

M = c3(3k2 − 1) (3.3)

holds.
Let γ > 0 and V be a triangle with vertex in points −kc + ic, ipc and the origin

(see Figure 1). We define sets W and Z by

Wγ = cl

({
z ∈ C : −Im

(
1

z

)
≤ γ,Im(z) ≥ c,Re(z) ≤ 0

}
\ V
)
, (3.4)

Zγ = {z ∈ C : z ∈Wγ} , (3.5)

W =
⋃
γ>0

Wγ = cl ({z ∈ C : Re[z] ≤ 0, Im[z] ≥ c} \ V ) , (3.6)

Z = {z ∈ C : z ∈W} . (3.7)
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Fig. 1. The set Wγ is marked in grey

We show that the vector field v points inward Wγ or is tangent to its boundary
at every point of ∂Wγ provided that γ is small enough. To do this, let us divide ∂Wγ

into four parts

Γ1 = ∂Wγ ∩
{
z ∈W : −Im

(
1

z

)
= γ

}
,

Γ2 = ∂Wγ ∩ {z ∈W : Re(z) = 0} ,
Γ3 = ∂Wγ ∩ V,
Γ4 = ∂Wγ ∩ {z ∈W : Im(z) = c} .

For γ small enough, the term z3 is the dominating term in v at every point of Γ1,
so by calculations similar to the ones from the proof of [7, Theorem 4], the vector
field v points inwards Wγ in every point of Γ1.

By (3.1), for every z such that Re(z) = 0 one gets

Re[v(t, z)] = Re[f(t)] < 0,

so the vector field v points inwards Wγ in every point of Γ2.
Now we parameterize Γ3 by

s3 : [c, pc] 3 o 7→ −kpc− o
p− 1

+ io.

An outward orthogonal vector to Wγ is given by n3 = 1− k
p−1 i. Since

Re

[(
−kpc− o

p− 1
+ io

)3(
1 +

k

p− 1
i

)]
≤ Re

[
s33(pc)

(
1 +

k

p− 1
i

)]
=
kp3c3

p− 1
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holds, thus, by (3.3) and (3.1), one gets

〈v(t, s3(o)), n3(o)〉 = Re

[((
−kpc− o

p− 1
+ io

)3

+ f(t)

)(
1 +

k

p− 1
i

)]
≤

≤ Re

[(
−kpc− o

p− 1
+ io

)3(
1 +

k

p− 1
i

)]
+

+ Re

[
f(t)

(
1 +

k

p− 1
i

)]
≤

≤ kp3c3

p− 1
−R+M

k

p− 1
=

= −R+
Mk

p− 1

(
p3c3

c3 (3k2 − 1)
+ 1

)
=

= −R+Mk
p3 + 3k2 − 1

(p− 1) (3k2 − 1)
= 0.

It is easy to observe that the inequality may hold only in the point ipc = s3(pc). In
every other point of Γ3 the inequality is strict.

Let us now define
s4 : [−ργ,c,−kc] 3 o 7→ o+ ic,

where ργ,c is such that s4 is a parameterization of Γ4. An outward orthogonal vector
to Wγ is given by n4 = −i. Now, by (3.3), one gets

〈v(t, s4(o)), n4(o)〉 = Re
[
i(o+ ic)3 + if(t)

]
= Re

[
−3o2c+ c3 + if(t)

]
≤

≤ c3
(
1− 3k2

)
+ |Im[f(t)]| = c3

(
1− 3k2

)
+M = 0.

It is easy to observe that the equality may hold only in the point −kc+ ic = s4(−kc).
In every other point of Γ4 the inequality is strict.

Finally, by the Denjoy–Wolff fixed point theorem, there exists exactly one
T -periodic solution inside the setWγ . It is asymptotically stable and attracting in the
whole Wγ . Since Wγ ⊂ Wρ for every 0 < ρ ≤ γ, there exists exactly one T -periodic
solution χ inside the setW . It is asymptotically stable and attracting in the wholeW .

By the symmetry of the vector field z3, one may modify the above calculations
and obtain the existence of exactly one T -periodic solution ν inside the set Z. The
solution is asymptotically stable and attracting in the whole Z.

Now we show that every solution starting in the set Ŝ
(
π
2

)
\ (W ∪ Z) is attracted

by χ or ν or is f.b. Write
V̂ = {z ∈ C : z ∈ V }

and
K = cl

(
Ŝ
(π

2

)
\
(
W ∪ Z ∪ V ∪ V̂

))
.

Every solution starting in V enters K or W . Indeed, let

ŝa : [c, pc] 3 o 7→ a

(
−kpc− o

p− 1
+ io

)
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for a ∈ [0, 1], then
V =

⋃
a∈[0,1]

ŝa([c, pc]).

A solution starting in ŝa((c, pc)) for some a ∈ [0, 1] points towards ŝb([c, pc]) for
b > a. To see this let us observe that for the orthogonal vector to ŝa((c, pc)) given by
na = 1− k

p−1 i one gets

Re

[
ŝ3a(o)

(
1 +

k

p− 1
i

)]
< Re

[
ŝ3a(pc)

(
1 +

k

p− 1
i

)]
=
ka3p3c3

p− 1
,

thus, by calculations similar to the ones for s3, one obtains

〈v(t, ŝa(o)), na〉 = Re

[(
a3
(
−kpc− o

p− 1
+ io

)3

+ f(t)

)(
1 +

k

p− 1
i

)]
≤

≤ −R+Mk
a3p3 + 3k2 − 1

(p− 1) (3k2 − 1)
< 0.

Similarly, every solution starting in V̂ enters K or Z.
By the definition of K and (3.1), for every solution η the inequality

d

dt
Re[η(t)] < 0

holds, provided that η(t) ∈ K. To see this let us observe that

d

dt
Re[η(t)] = Re[v(t, η(t))] = Re

[
η3(t)

]
+ Re[f(t)] < 0

is satisfied. Finally, every solution starting in K enters W , Z, V or V̂ but its real
part decreases as long as it stays in K. Moreover, when Re[η(t)] is small enough, the
solution behaves qualitatively the same as in the case of the unperturbed vector field
v(t, z) = z3. Thus, by the Ważewski method (see the proof of [7, Theorem 4]), η enters
W or Z or is f.b., so is attracted by χ or ν or is f.b.

To finish the proof let us observe, that by (3.1), every solution passing through
the imaginary axis is heteroclinic between ξ and χ or between ξ and ν or is being
repelled by ξ and is f.b.

Analysing vector field v in the cone S
(
π
2 − ε,

π
2 + ε

)
one gets the existence of b.b.

solutions (by the time reversing symmetry, the dynamics is similar to the one in the
set K). Since, for the unperturbed equation (i.e. v(t, z) = z3) these solutions stays in
imaginary axis, the perturbation f , pushes them inside the set W , so finally, they are
attracted by χ.

II. Now M = 0 and the real axis is invariant. Let Re[f(t)] < 0 for every t ∈ R.
We fix c > 0 and follow the construction from point I. If c is small enough, then
f is a dominating term on Γ3, so vector fields point inside W at every point of its
boundary. Moreover f is a dominating term in the set V , so the qualitative behaviour
of solutions is the same as in the point I.
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If f(t) = 0 for some t ∈ R, then it is still possible, to fix c > 0 so small that
ϕ(0,T ) (Γ3) ⊂ W and ϕ(0,T )(V ) ⊂ K ∪ V ∪W , so, qualitatively, the situation is the
same as above.

3.2. FURTHER REMARKS

Let us see some applications of Theorem 3.1.

Example 3.2. The equation

ż = z3 − 10 + eit

has three 2π-periodic solutions. One of them is asymptotically unstable (it is contained
in S

(
π
2

)
) and two other are asymptotically stable (one is contained in S

(
π
2 , π

)
and the

other in S
(
−π,−π2

)
). Every other solution is heteroclinic between them or blows up.

Example 3.3. The equation

ż = z3 + 10 + i sin(t)

has three 2π-periodic solutions. One of them is asymptotically unstable (it is contained
in Ŝ

(
π
2

)
) and two other are asymptotically stable (one is contained in S

(
0, π2

)
and

the other in S
(
−π2 , 0

)
). Every other solution is heteroclinic between them or blows

up. To see this, one needs to use the change of variables

w = −z. (3.8)

Using the change of variables (3.8) one can obtain the following corollary.

Corollary 3.4. Let T > 0, P ∈ R and f ∈ C(R,C) be T -periodic. Then the equation

ż = z3 + f(t) + P

has three 2π-periodic solutions provided that |P | is big enough. One of them is asymp-
totically unstable and two other are asymptotically stable. Every other solution is
heteroclinic between them or blows up.

Example 3.5. The equation
ż = z3 + 4i+ eit

has three 2π-periodic solutions. One of them is asymptotically stable (it is contained
in S (0, π)) and two other are asymptotically unstable (one is contained in S

(
−π2 , 0

)
and the other in S

(
−π,−π2

)
). Every other solution is heteroclinic between them or

blows up. To see this, one needs to reverse the time, i.e. use the change of variables
given by

x(t) = z(−t). (3.9)

Combining changes of variables (3.8) and (3.9), one can prove the following
corollary.
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Corollary 3.6. Let T > 0, P ∈ R and f ∈ C(R,C) be T -periodic. Then the equation

ż = z3 + f(t) + iP

has three 2π-periodic solutions provided that |P | is big enough. One of them is asymp-
totically stable and two other are asymptotically unstable. Every other solution is
heteroclinic between them or blows up.

By (3.1), Theorem 3.1 may be applied to some f satisfying the inclusion

f(R) ⊂ cl Ŝ

(
arctan

(
1 +
√

33

6
√

6 +
√

33

))
. (3.10)

Since 1+
√
33

6
√

6+
√
33
≈ 0, 328, the above sector seems to be quite narrow. On the other

hand, the condition (3.1) depends heavily on the shape of the set W .
This leads to the following open problem.

Open Problem 3.7. What is the infimum over α ≥ 0 such that the equation (1.2)
with f ∈ Ŝ(α), has dynamics different from the one presented in Theorem 3.1?

The following example shows that the infimum may be at most π
4 .

Example 3.8. The equation
ż = z3 − e−iπ4

has only two isolated periodic (constant) solutions z ≡ ei 7
12π and z ≡ e−i π12 . Moreover,

it has a centre at e−i
3
4π.

4. HIGHER DEGREE POLYNOMIALS

The method presented in the previous section may be applied to equation (1.3). In this
case, one may obtain the existence of three periodic solutions, but the full description
of dynamics is impossible, because considered sectors do not cover the whole plain.

The following statement is the main theorem in the present section.

Theorem 4.1. Let n > 3 be odd, m ∈ {0, 1, . . . , n− 1}, P ∈ R, T > 0 and f ∈
C(R,C) be T -periodic. Then the equation

ż = zn + f(t) + Pei
π
n−1m (4.1)

has at least three T -periodic solutions, provided that |P | is big enough. If m is even,
then at least one periodic solution is asymptotically unstable and at least two of them
are asymptotically stable. If m is odd, then at least one periodic solution is asymptoti-
cally stable and at least two of them are asymptotically unstable. There are heteroclinic
solutions between unstable and stable ones.
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Example 4.2. By Theorem 4.1, the equation

ż = z9 + eit + P

has at least three 2π-periodic solutions, provided that |P | is big enough. One periodic
solution is asymptotically unstable and the other two are asymptotically stable.

Example 4.3. By Theorem 4.1, the equation

ż = z7 + eit + Pei
π
6

has at least three 2π-periodic solutions, provided that |P | is big enough. One periodic
solution is asymptotically stable and the other two are asymptotically unstable.

Theorem 4.1 is a straightforward consequence of the following technical lemma
and changes of variables of the form x = zei

π
n−1m and (3.9).

Lemma 4.4. Let n > 3 be odd, T > 0 and f ∈ C(R,C) be T -periodic. We write

R = min {−Re(f(t)) : t ∈ R} ,
M = max {|Im(f(t))| : t ∈ R} ,

H(n) = min
{
H(n, k, p) : p > 1, k ≥ cot

(π
n

)}
,

where

H(n, k, p) =
1

p− 1

∣∣∣∣p cot

(
π

n− 1

)
− k
∣∣∣∣+

pn
[
k sin

(
π
n−1

)
− cos

(
π
n−1

)]
sinn

(
π
n−1

)
Im [(i− k)n]

 .
If

MH(n) ≤ R, (4.2)

M < R tan

(
π

n− 1

)
(4.3)

hold then equation (1.3) has:

— exactly one T -periodic solution inside S
(

π
n−1

)
– it is asymptotically unstable and

repelling in the whole S
(

π
n−1

)
,

— infinitely many f.b. solutions inside S
(

π
n−1

)
,

— exactly two T -periodic solutions inside Ŝ
(

2π
n−1

)
– they are asymptotically sta-

ble – one of them is contained in the sector S
(
n−3
n−1π, π

)
and the other in

S
(
−π,−n−3n−1π

)
,

— infinitely many b.b. solutions inside S
(
n−3
n−1π, π

)
,
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— infinitely many b.b. solutions inside S
(
−π,−n−3n−1π

)
,

— infinitely many f.b. solutions inside Ŝ
(

2π
n−1

)
.

Moreover, every solution starting in Ŝ
(

2π
n−1

)
is either a f.b. solution or is attracted

by an asymptotically stable periodic one.

Proof. The concept of the proof is similar to the one from the proof of Theorem 3.1.
The differences comes from the fact that now the considered sectors are narrower then
previously.

Let us fix n. By (4.3), one gets f(R) ⊂ Ŝ
(

π
n−1

)
. Thus, by [7, Theorem 4], equation

(1.3) has exactly one T -periodic solution ξ in S
(

π
n−1

)
. It is asymptotically unstable

and repelling in the whole S( π
n−1 ). Every other solution staying inside S( π

n−1 ) for
some time is a f.b. solution or leaves the set through its boundary.

Now we need to investigate the dynamics in Ŝ( 2π
n−1 ). By the symmetries of the

term zn we do it in S(n−3n−1π, π). Qualitatively, the situation in S(−π,−n−3n−1π) is the
same.

Let M > 0 (the case M = 0 is similar to the one in the proof of Theorem 3.1).
In the sequel we write k, p (where p > 1, k ≥ cot

(
π
n

)
) to denote numbers such that

H(n) = H(n, k, p) is satisfied. Let c > 0 be such that

M = cnIm [(i− k)n] (4.4)

holds.
The crucial point is to define the setWγ,ε ⊂ S

(
n−3
n−1π, π

)
such that the vector field

u points inwards at every point of its boundary. Write

Wγ,ε = cl

({
z ∈ C : Arg[z] ≥ n− 3

n− 1
π + ε,−Im

(
z

1−n
2

)
≤ γ,Im(z) ≥ c

}
\ V
)
,

Zγ,ε = {z ∈ C : z ∈Wγ,ε} ,

W = cl
⋃

γ>0,ε>0

Wγ,ε = cl

({
z ∈ C : Arg[z] ≥ n− 3

n− 1
π, Im[z] ≥ c

}
\ V
)
,

Z = {z ∈ C : z ∈W} ,

where V is the triangle with vertices at points V0 = 0, V1 = −kc + ic and V2 =[
i− cot

(
2π
n−1

)]
pc[k−cot( π

n−1 )]
(p−1) cot( 2π

n−1 )+k−p cot( π
n−1 )

(see Figure 2).

We show that in every point of the boundary of Wγ,ε the vector field u points
inwards Wγ,ε or is tangent to the boundary, provided that γ > 0 is small enough
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and ε ∈
(

0, π
n−1

)
. To do this, let us divide ∂Wγ into four parts

Γ1 = ∂Wγ,ε ∩
{
z ∈W : −Im

(
z

1−n
2

)
= γ

}
,

Γ2 = ∂Wγ,ε ∩
{
z ∈W : Arg[z] =

n− 3

n− 1
π + ε

}
,

Γ3 = ∂Wγ,ε ∩ V,
Γ4 = ∂Wγ,ε ∩ {z ∈W : Im(z) = c} .

Fig. 2. The set Wγ,ε is marked in grey

For any ε ∈
(
0, π

n−1
)
there exists γ small enough such that the term zn is the

dominating term in u at every point of Γ1, so by calculations similar to the ones from
the proof of [7, Theorem 4], the vector field v points inwardsWγ,ε in every point of Γ1.

For every z ∈ Γ2 an outward orthogonal vector to Wγ,ε at z is given by n2 =

−iei
n−3
n−1π+iε. Since z = |z|ei

n−3
n−1π+iε, then, by (4.3), one gets

Re [n2u(t, z)] = Re
[
ie−i

n−3
n−1π−iε

(
|z|nein

n−3
n−1π+inε + f(t)

)]
=

= |z|nRe
[
iei(n−1)

n−3
n−1π+i(n−1)ε

]
+ Re

[
ie−i

n−3
n−1π−iεf(t)

]
≤

≤ 0 + |f(t)|Re
[
iei

2
n−1π+iArg[−f(t)]

]
< 0,

so the vector field u points inwards Wγ,ε in every point of Γ2.
Now we parameterize Γ3 by

s3 : [c, ρε,c] 3 o 7→ io−
(pc− o)k + (o− c)p cot

(
π
n−1

)
p− 1

,
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here ρε,c is such that s3 is a parameterization of a whole of Γ3. An outward orthogonal
vector to Wγ,ε is given by n3 = 1 + i

p cot( π
n−1 )−k
p−1 . Since, for any o ∈ [c, ρε,c] the

inequality

Re [(s3(o))
n
n3] < Re [sn3 (pc)n3] =

pncn

sinn
(

π
n−1

) k sin
(

π
n−1

)
− cos

(
π
n−1

)
p− 1

holds, thus, by (4.4) and (4.2), one gets

〈u(t, s3(o)), n3〉 =Re [((s3(o))
n

+ f(t))n3] <

<
pncn

sinn
(

π
n−1

) k sin
(

π
n−1

)
− cos

(
π
n−1

)
p− 1

+

+ Re

f(t)

1− i
p cot

(
π
n−1

)
− k

p− 1

 ≤
≤ pncn

sinn
(

π
n−1

) k sin
(

π
n−1

)
− cos

(
π
n−1

)
p− 1

−

−R+
M

p− 1

∣∣∣∣p cot

(
π

n− 1

)
− k
∣∣∣∣ =

= −R+MH(n) ≤ 0.

Let now define

s4 : [−ργ,c,−kc] 3 o 7→ o+ ic,

where ργ,c is such that s4 is a parameterization of Γ4. An outward orthogonal vector
to Wγ is given by n4 = −i. Now, by k ≥ cot

(
π
n

)
and (4.4), one gets

〈u(t, s4(o)), n4(o)〉 = Re [i(o+ ic)n + if(t)] ≤
≤ Re [i(−kc+ ic)n + if(t)] = −cnIm [(i− k)

n
] + |Im[f(t)]| = 0.

It is easy to observe that the equality may hold only in the point −kc+ ic = s4(−kc).
In every other point of Γ4 the inequality is strict.

Finally, by the Denjoy–Wolff fixed point theorem, there exists exactly one
T -periodic solution inside the set Wγ,ε. It is asymptotically stable and attracting
in the whole of Wγ,ε. Since Wγ,ε ⊂ Wρ,δ for every 0 < ρ ≤ γ, 0 < δ ≤ ε there exists
exactly one T -periodic solution χ inside the set W . It is asymptotically stable and
attracting in the whole W .

By the symmetry of the vector field zn, one may modify the above calculations
and obtain the existence of exactly one T -periodic solution ν inside the set Z. The
solution is asymptotically stable and attracting in the whole of Z.
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To show that every solution starting in the set Ŝ
(

2π
n−1

)
\ (W ∪Z) is attracted by

χ or ν or is a f.b. it is enough to follow the method from the proof of Theorem 3.1.
Existence of a b.b. solution may be obtained by analysing the dynamics in the

sectors S
(
n−2
n−1π − δ,

n−2
n−1π + δ

)
and S

(
−n−2n−1π + δ,−n−2n−1π − δ

)
for some small posi-

tive δ.

Remark 4.5. Since n > 3 is odd, the set Ŝ
(

2π
n−1

)
is contained in {z ∈ C : Re[z] < 0}.

It is not true for n = 3, so a different proof for Theorem 3.1 is needed.

Lemma 4.4 may be used directly to investigate the dynamics of the equations. The
main difficulty is the calculation of H(n). Let us observe that

H(5, k, p) =
1

p− 1

[
|p− k|+ 4p5(k − 1)

5k4 − 10k2 + 1

]
holds. Thus the numerical calculations give

H(5) = H(5, k0, p0) < 1.66, k0 ≈ 4.55, p0 ≈ 2.92.

Example 4.6. By Lemma 4.4, the equation

ż = z5 − 1 +
3

5
i sin(t)

has at least three 2π-periodic solutions. One periodic solution is asymptotically un-
stable and the other two are asymptotically stable.
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