PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some efficient seventh-order derivative-free families in root-finding

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interest in efficient root-finding iterations is nowadays growing and influenced by the widespread use of high-speed computers. On the other hand, the calculation of derivatives is often hard, when the problems are formulated in terms of nonlinear equations and as a result, the importance of derivative-free methods emerges. For these reasons, some efficient three-step families of iterations for solving nonlinear equations are suggested, where the analytical proofs show their seventh-order error equations consuming only four function evaluations per iteration. We employ hard numerical test problems to illustrate the accuracy of the new methods from the families.
Rocznik
Strony
163--173
Opis fizyczny
Bibliogr. 13 poz., tab.
Twórcy
autor
Bibliografia
  • [1] A. Iliev, N. Kyurkchiev, Nontrivial Methods in Numerical Analysis (Selected Topics in Numerical Analysis), Lambert Acad. Publishing, 2010.
  • [2] S.K. Khattri, I.K. Argyros, Sixth order derivative free family of iterative methods, Appl. Math. Comput. 217 (2011), 5500-5507.
  • [3] H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, Journal of ACM 21 (1974), 643-651.
  • [4] W. Liu, L. Wang, X. Bai, H. Zhang, Optimization calculation and analysis of moving load of the railgun by Newton method, Modern Appl. Sci. 5 (2011), 212-216.
  • [5] Y. Peng, H. Feng, Q. Li, X. Zhang, A fourth-order derivative-free algorithm for nonlinear equations, J. Comput. Appl. Math. 15 (2011), 2551-2559.
  • [6] H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods with fourth-order convergence, Appl. Math. Comput. 209 (2009), 206-210.
  • [7] M. Sharifi, D.K.R. Babajee, F. Soleymani, Finding the solution of nonlinear equations by a class of optimal methods, Comput. Math. Appl. 63 (2012), 764-774.
  • [8] F. Soleymani, M. Sharifi, On a cubically iterative scheme for solving nonlinear equations, Far East J. Appl. Math. 43 (2010), 137-143.
  • [9] F. Soleymani, S. Karimi Vanani, Optimal Steffensen-type methods with eighth order of convergence, Comput. Math. Appl. 62 (2011), 4619-4626.
  • [10] F. Soleymani, S.K. Khattri, S. Karimi Vanani, Two new classes of optimal Jarratt-type fourth-order methods, Appl. Math. Lett. 25 (2012), 847-853.
  • [11] J.F. Steffensen, Remarks on iteration, Skand. Aktuarietidskr 16 (1933), 64-72.
  • [12] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Inc., Engle-wood Cliffs, NJ, 1964.
  • [13] Q. Ye, X. Xu, A class of Newton-like methods with cubic convergence for nonlinear equations, Fixed Point Theory 11 (2010), 161-168.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0009-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.