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Abstract. The interest in efficient root-finding iterations is nowadays growing and influ-
enced by the widespread use of high-speed computers. On the other hand, the calculation of
derivatives is often hard, when the problems are formulated in terms of nonlinear equations
and as a result, the importance of derivative-free methods emerges. For these reasons, some
efficient three-step families of iterations for solving nonlinear equations are suggested, where
the analytical proofs show their seventh-order error equations consuming only four function
evaluations per iteration. We employ hard numerical test problems to illustrate the accuracy
of the new methods from the families.
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1. INTRODUCTION

There are many situations in which the calculation of derivatives of the functions
is hard or they should be computed numerically. Due to this, the application of
derivative-involved methods in solving nonlinear scalar equations, such as New-
ton’s iteration, is confined. Our investigation here concerns the approximation of
a zero of f(x) or equivalently, the estimation of a root of the equation f(x) = 0
by derivative-free methods. Herein, we restrict ourselves to f(x) which are real
single-valued functions of a real variable possessing a smooth condition in the domain
D including the simple root. Moreover, using computers meant that many high-order
algorithms, formerly of academic interest only, become feasible for calculation and
they can, in fact, be used repeatedly in many establishments for a wide variety of
problems.

In the fundamental book [12], iterations for solving nonlinear equations are divided
into two main categories of “one-point” and “multi-point” iterations where each of them
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are sub-classified into “with” or “without memory” iterative methods. The interest in
multi-point methods has renewed due to overcoming the drawbacks of one-point it-
erations. In fact, they possess better convergence order and efficiency indices when
solving single-valued nonlinear equations. Note that the efficiency of a method is mea-
sured by the concept of efficiency index (if both function and derivative evaluations
have the same computational cost) as n

√
p, where p is the convergence (speed) rate

and n denotes the whole number of evaluations per full iteration [12]. Moreover, we
define the order and asymptotic error constant of an iteration function as follows. Let
x1, x2, . . . , xi, . . . be a sequence converging to α, namely, the simple root of a nonlinear
equation. Let furthermore ei = xi − α be the error equation in the ith step. If there
exists a real number p and a nonzero constant C such that limi→∞ |ei+1|/|ei|p = C,
then p is called the convergence (speed) order of the sequence and C is called the
asymptotic error constant.

In this paper, we look for high-order methods in which there is no need for a
derivative calculation per full cycle and can be easily applied to hard problems, when
the evaluation of the derivatives is impossible.

In what follows, we provide a short literature review on the available famous
derivative-free methods in Section 2. Next, in Section 3, we furnish some families of
efficient three-step without memory iterations for simple roots, which comprise four
function evaluations per cycle only. The analytical proofs of the main contributions
are also given therein. Section 4 gives a thorough numerical comparison between
the existing derivative-free methods and our novel proposed derivative-free methods
from the families. This section also contains a seventh-order algorithm with globally
convergence. Finally, in Section 5, some concluding remarks are given.

2. LITERATURE REVIEW

The main objective of this section is to give a short review on the most impor-
tant derivative-free methods in the literature. However, note that the overview of the
published articles during the last ten years (2000–2010) concerning numerical meth-
ods for solving nonlinear equations is given in Part 1 of the well-written standard
text-book [1]. The first derivative-free method was provided in [11] as follows (in the
backward form)

xn+1 = xn −
f(xn)2

f(xn)− f(xn − f(xn))
, (2.1)

wherein the iteration uses two functional evaluations per cycle, as the Newton’s itera-
tion does, to reach convergence order two. Note that, the forward form of Steffensen’s
method; f(xn + f(xn)) − f(xn) in the denominator of (2.1), also possess the same
order of convergence.
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Some decades later, Kung and Traub in the fundamental paper [3] provided the
following derivative-free family (β ∈ R\{0}) of methods by using inverse interpolation

yn = xn + βf(xn),

zn = yn − β f(xn)f(yn)
f(yn)−f(xn)

,

xn+1 = zn − f(xn)f(yn)
f(yn)−f(xn)

[ 1
f [yn,xn]

− 1
f [zn,yn]

],

(2.2)

where f [yn, xn] and f [zn, yn] are divided differences. Note that similar notations will
be used throughout the paper. The scheme (2.2) comprises three evaluations of the
function to reach convergence rate four. They moreover gave an n-step derivative-free
family of one parameter with 2n as its maximum convergence rate.

Later, in [6] the authors gave the following two-step iterative family using three
function evaluations per full iteration{

yn = xn − f(xn)
f [xn,wn]

,

xn+1 = yn − f(yn)
f [xn,yn]+f [yn,wn]−f [xn,wn]+b(yn−xn)(yn−wn)

,
(2.3)

where wn = xn+f(xn) and b ∈ R. Note that the first step of (2.3) or any improvements
of derivative-free without memory iterations is mostly the (backward or forward forms
of) Steffensen’s method (2.1).

Recently, in [2], authors provided a three-step sixth-order family of derivative-free
methods by four evaluations per cycle as comes next

yn = xn − f(xn)
f [xn,wn]

,

zn = yn − f(yn)
f [xn,wn]

[1 + f(yn)
f(xn)

+ f(yn)
f(wn)

+ α( f(yn)
f(xn)

)2 + β( f(yn)
f(wn)

)2],

xn+1 = zn − f(yn)
f [xn,wn]

[1 + f(yn)
f(xn)

+ f(yn)
f(wn)

+ α( f(yn)
f(xn)

)2 + β( f(yn)
f(wn)

)2 + η f(zn)
f(yn)

],

(2.4)

whence wn = xn − κf(xn), κ ∈ R \ {0}, α, β, and η ∈ R. For further study on this
topic or related matters, one may consult the papers [4,7,8,9,10].

3. NOVEL DERIVATIVE-FREE FAMILIES

This section contains the central contributions of this paper. As can be seen from
the existing methods in Section 2, to give high-order derivative-free methods, first
of all, we should consider a three-step cycle in which (2.3) with b = 0 is in the first
and second steps of the cycle, as well as a suitable weight function at the third step
alongside f ′(zn) ≈ f [xn, zn]. Hence, we suggest the following three-step iteration

yn = xn − f(xn)
f [xn,wn]

,

zn = yn − f(yn)
f [xn,yn]+f [yn,wn]−f [xn,wn]

,

xn+1 = zn − f(zn)
f [xn,zn]

[1 + f(yn)
f(wn)

+ f(zn)
f(yn)

+ { 2+f [xn,wn]
(1+f [xn,wn])2

}( f(yn)
f(xn)

)2+

+γ f(zn)
f(xn)

+ δ f(zn)
f(wn)

],

(3.1)
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wherein wn = xn + f(xn), γ, δ ∈ R. The without memory iteration (3.1) includes
four function evaluations per full cycle just like (2.4), but it arrives at seventh-order
convergence according to Theorem 3.1. Moreover, γ and δ are two real valued free
parameters. At this time a question one might raise is how was the weight function in
the third step of (3.1) attained; this question will be answered after ending the proof
of Theorem 3.1.

Theorem 3.1. Let α ∈ D be a simple zero of a sufficiently differentiable function
f : D ⊆ R → R and let that cj = f (j)(α)/j!, j ≥ 1. If x0 is sufficiently close to α,
then,

(i) the order of convergence of the solution by the family defined in (3.1) is seven,
and

(ii) this solution reads the error equation

en+1 = −((1 + c1)2c22(−c22 + c1c3)(c1(1 + c1)c3(−2 + γ + c1γ + δ)−
− c22(−6 + γ + δ + c1(−6 + c1(−1 + γ) + 2γ + δ)))e7n)/(c61) +O(e8n).

(3.2)

Proof. We expand any terms of (3.1) around the simple root α in the nth iterate.
Thus, we write f(xn) = c1en+c2e

2
n+c3e

3
n+c4e

4
n+ . . .+O(e8n). Accordingly, we attain

yn = α+
(

1 +
1

c1

)
c2e

2
n +O(e3n). (3.3)

Note that for simplicity, we just included the first or second terms of the obtained
Taylor expansion for any expression in the proof. Now we should expand f(yn) around
the simple root by using (3.3). We have

f(yn) = (1 + c1)c2e
2
n +O(e3n). (3.4)

Using (3.4) and the second step of (3.1), we attain

f(yn)

f [xn, yn] + f [yn, wn]− f [xn, wn]
=
(

1 +
1

c1

)
c2e

2
n +O(e3n). (3.5)

Additionally, the Taylor’s series expansion of the second step of (3.1), using (3.5)
gives us

zn − α = (1/c31)(1 + c1)2c2(c22 − c1c3)e4n +O(e5n). (3.6)

Now, the Taylor expansion of f(zn) around the simple root is needed. Therefore, we
find that

f(zn) =
(1 + c1)2c2(c22 − c1c3)

c21
e4n +O(e5n). (3.7)

In the last step of (3.1), we attain

1 +
f(yn)

f(wn)
+
f(zn)

f(yn)
+
{ 2 + f [xn, wn]

(1 + f [xn, wn])2

}( f(yn)

f(xn)

)2
+

+ γ
f(zn)

f(xn)
+ δ

f(zn)

f(wn)
= 1 +

c2e
1
n

c1
+
c3e

2
n

c1
+O(e3n).

(3.8)
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Finally, using (3.6)-(3.8) in the last step of (3.1) and simplifying ends in

en+1 = −((1 + c1)2c22(−c22 + c1c3)(c1(1 + c1)c3(−2 + γ + c1γ + δ)−
− c22(−6 + γ + δ + c1(−6 + c1(−1 + γ) + 2γ + δ)))e7n)/(c61) +O(e8n).

(3.9)

This shows that (3.1) is a seventh-order bi-parametric family of derivative-free with-
out memory iterations consuming only four function evaluations per full cycle. This
completes the proof.

To discuss on how the weight function 1+ f(yn)
f(wn)

+ f(zn)
f(yn)

+{ 2+f [xn,wn]
(1+f [xn,wn])2

}( f(yn)
f(xn)

)2+

γ f(zn)
f(xn)

+δ f(zn)
f(wn)

was obtained in the last step of (3.1), we should remark that according
to the approach of the weight function, in fact we generally consider the following

xn+1 = zn −
f(zn)

f [xn, zn]
[G(A) +H(B) +K(Γ) + L(∆) + P (E)], (3.10)

wherein G(A), H(B),K(Γ), L(∆) and P (E) are five real-valued weight functions with
A =

f(yn)
f(wn)

, B =
f(zn)
f(yn)

, Γ =
f(yn)
f(xn)

, ∆ =
f(zn)
f(xn)

and E =
f(zn)
f(wn)

. The weight function should
be chosen such that order of convergence seven is attained. That is to say, by Taylor’s
series expanding around the simple root, we will find that the conditions on the weight
functions, which lead the order to seven are as follows G(0) = G′(0) = 1, G′′(0) = 0,
|G(3)(0)| <∞, H(0) = 0, H′(0) = 1, K(0) = K′(0) = 0, K′′(0) = 2(

2+f [xn,wn]

(1+f [xn,wn])2
), |K(3)(0)| <∞,

L(0) = 0, |L′(0)| <∞, and P (0) = 0, |P ′(0)| <∞. Therefore, in general, we can give a class
of three-step derivative-free seventh-order methods which reads in the follow-up error
equation and (3.1) is just a especial case of this class

en+1 =
1

6c61
(1 + c1)2c22(−c22 + c1c3)(−6c1(1 + c1)c3(−2 + (1 + c1)L′(0) + P ′(0))+

+ c22(−36 + 6L′(0) + 6P ′(0) + 6c1(−6 + c1(−1 + L′(0)) + 2L′(0) + P ′(0))+

+G(3)(0) +K(3)(0) + c1(3 + c1(3 + c1))K(3)(0)))e7n +O(e8n).

(3.11)

From the viewpoint of applications, the iterations such as (3.1) are much better
than derivative-involved methods. Since the derivatives cannot always be calculated.
Moreover, some hard nonlinear functions are not differentiable (smooth) in the neigh-
borhood of the simple zero (D).

In addition to (3.1), we would like to present more new seventh-order families. In
(3.1), we used the finite difference approximation f [xn, zn] in the denominator of the
fraction which its numerator is f(zn). In what follows, we change this finite difference
approximation and try to suggest some other new seventh-order families like (3.1).
Toward this end, we again consider a three-step cycle, like (3.1), but with a different
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third step as comes next (i.e. a different procedure in constructing the weight function
to make the order seven based on a new finite difference approximation)

yn = xn −
f(xn)

f [xn,wn]
,

zn = yn −
f(yn)

f [xn,yn]+f [yn,wn]−f [xn,wn]
,

xn+1 = zn −
f(zn)

f [wn,zn]

[
1 + f(zn)

f(yn)
+ f(yn)

f(xn)
+

+{2 + f [xn, wn](3 + f [xn, wn])}
(

f(yn)

f(wn)

)2
+ ω

f(zn)

f(xn)
+ ϕ f(zn)

f(wn)

]
,

(3.12)

wherein wn = xn+f(xn), ω, ϕ ∈ R. The without memory iteration (3.12) includes four
function evaluations per full cycle just like (2.4) and (3.1). Theorem 3.2 illustrates that
(3.12) arrives at seventh order of convergence. Moreover, ω and ϕ are two real valued
free parameters. The discussion on how the weight function in (3.12) was attained is
quite similar to the previous case given above, thus it is omitted.

Theorem 3.2. Let α ∈ D be a simple zero of a sufficiently differentiable function
f : D ⊆ R → R and let that cj = f (j)(α)/j!, j ≥ 1. If x0 is sufficiently close to α,
then the order of convergence of the solution by the family defined in (3.12) is seven.

Proof. We assume the symbolic computation as done in the proof of Theorem 3.1, and
then we obtain (3.3)–(3.7) again. For the weight function in the third step of (3.12),
we have

1 +
f(zn)

f(yn)
+
f(yn)

f(xn)
+ {2 + f [xn, wn](3 + f [xn, wn])}

( f(yn)

f(wn)

)2
+ ω

f(zn)

f(xn)
+

+ ϕ
f(zn)

f(wn)
= 1 +

(
1 +

1

c1

)
c2e

1
n +

(c22 + (1 + c1)2c3)e2n
c1

+O(e3n).

(3.13)

Finally using (3.7) and (3.13) and the last step of (3.12) results in

en+1 = (1/(c61))(1 + c1)3c22(c22 − c1c3)(c22(6 + c1(6 + c1 − ω)− ω − ϕ)+

+ c1c3((1 + c1)(−2 + ω) + ϕ))e7n +O(e8n).
(3.14)

This shows the seventh order of convergence of (3.12) by using only four function
evaluations per full iteration. The proof is complete.

More similar families to (3.1) and (3.12) could be given by changing wn (i.e. the
backward finite difference approximation of f ′(xn) instead of forward) and the weight
function in the last step of a three-step cycle. To propose another novel three-step
without memory iteration with the same number of evaluations as in (3.1) and (3.12),
we suggest the following scheme in which wn = xn − f(xn) and ρ, τ ∈ R

yn = xn − f(xn)
f [xn,wn]

,

zn = yn − f(yn)
f [xn,yn]+f [yn,wn]−f [xn,wn]

,

xn+1 = zn − f(zn)
f [xn,zn]

[1 + f(yn)
f(wn)

+ f(zn)
f(yn)

+ { 2−f [xn,wn]
(f [xn,wn]−1)2 }(

f(yn)
f(xn)

)2+

+ρ f(zn)
f(xn)

+ τ f(zn)
f(wn)

].

(3.15)
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Theorem 3.3. Let α ∈ D be a simple zero of a sufficiently differentiable function
f : D ⊆ R → R and let that cj = f (j)(α)/j!, j ≥ 1. If x0 is sufficiently close to α,
then, the order of convergence of the solution by the family defined in (3.15) is seven
when wn = xn − f(xn) and it reads the following error equation

en+1 = −(1/(c61))(−1 + c1)2c22(−c22 + c1c3)((−1 + c1)c1c3(2 + (−1 + c1)ρ− τ)−
− c22(−6 + ρ+ c1(6 + c1(−1 + ρ)− 2ρ− τ) + τ))e7n +O(e8n).

(3.16)

Proof. The proof of this theorem is similar to the Proofs of Theorem 3.1 and Theo-
rem 3.2. Hence, it is omitted.

We can further develop the following scheme (without any free parameter to reduce
the computational load) by choosing wn = xn−f(xn) and a different weight function
which also possesses seventh-order convergence according to Theorem 3.4.

yn = xn − f(xn)
f [xn,wn]

,

zn = yn − f(yn)
f [xn,yn]+f [yn,wn]−f [xn,wn]

,

xn+1 = zn − f(zn)
f [wn,zn]

[1 + f(zn)
f(yn)

+ f(yn)
f(xn)

+

+{2 + f [xn, wn](−3 + f [xn, wn])}( f(yn)
f(wn)

)2],

(3.17)

Theorem 3.4. Let α ∈ D be a simple zero of a sufficiently differentiable function
f : D ⊆ R → R and let that cj = f (j)(α)/j!, j ≥ 1. If x0 is sufficiently close to α,
then, the order of convergence of the solution by the method defined in (3.17) is seven
when wn = xn − f(xn) and it reads the following simple error equation

en+1 =
(−1 + c1)

3c22(−c22 + c1c3)((6 + (−6 + c1)c1)c
2
2 + 2(−1 + c1)c1c3)e

7
n

c61
+O(e8n). (3.18)

Proof. The proof of this theorem is similar to the proofs of Theorem 3.1 and
Theorem 3.2. Hence, it is omitted.

In terms of the computational point of view and efficiency index (defined in Sec-
tion 1), each derivative-free method of the families (3.1), (3.12), (3.15) and (3.17)
arrives at 4

√
7 ≈ 1.6265, which is greater than that of (2.1) i.e. 2

√
2 ≈ 1.4142, that of

the cubical methods 3
√

3 ≈ 1.4422 such as the methods in [13], that of (2.2) and (2.3)
with 3

√
4 ≈ 1.5874 and that of (2.4) with 4

√
6 ≈ 1.5650.

4. NUMERICAL REPORTS

Computational tests for the reported families of derivative-free without memory meth-
ods were done by means of Matlab 7.6 using 500 digits floating point arithmetic
(VPA: 500). The level of approximation of the solution (root) is directly tied to the
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precision ε = 10−500 of the computer. The adopted stopping criterion for the computer
programs were selected as |f(xn)| ≤ ε, in the nth iterate.

The nonlinear hard test functions are displayed in Table 1 with their simple roots
and the initial approximations for each test function. The methods considered in nu-
merical comparisons are the quadratic method of Steffensen (2.1), the quartic method
of Ren et al. with b = 2, the hexical method of Khattri and Argyros with κ = η = 1 and
α, β = 0, the seventh-order family (3.1)-(PM1) with γ = δ = 0, and the seventh-order
family (3.15)-(PM2) with ρ = τ = 0. Family (3.12) and method (3.17) produce some-
how similar results to (3.1) and (3.15), hence, we omit them in numerical comparisons.

The results of comparisons are displayed in Table 2, where “IT”, “TNE”, “CPU
time” (in seconds) show the number of iterations, the total number of evaluations, the
elapsed time taken by the Matlab m-file of the method to run, respectively. In Table 2,
|f | shows the absolute value of the function after the specified number of iterations.
The computer specifications are Microsoft Windows XP, Intel(R) Pentium(R) 4, CPU
3.20 GHz, with 4 GB of RAM.

We should remark that CPU run time is not unique and depends on the specifica-
tions of the computers. However, we list the CPU-time by a mean over 15 performances
of the Matlab Codes to reveal its validness.

As can be seen from Table 2, the numerical results support the theory devel-
oped in Section 3. However, in viewpoint of e-time our methods from the developed
derivative-free families (or classes) require a little more time, which dose not limit the
applicability of our suggested methods.

The only drawback of multi-point iterations is finding a proper starting point near
to the sought zero. Mostly, a high-order iterative method does not guarantee conver-
gence and this emerges the importance of the attraction basin (the set of all guesses
which lead to find the solution). However, in such cases the best way is to combine the
high-order method with the low-order schemes which guarantee the convergence, such
as Bisection or Regula Falsi methods [5]. In what follows, we present a combination
between our derivative-free seventh-order family (3.1) with the bisection method to
reach global convergence. Note that any of the schemes (3.12), (3.15) and (3.17) could
also be applied instead of (3.1) in the following algorithms.

Algorithm 1. A seventh-order globally convergent iterative algorithm free from
derivative for f(x) = 0.

0. Let the initial small interval [a0, b0] with f(a0)f(b0) < 0 and the initial guess x0 ∈ [a0, b0] be
available. The precision ε = 10−500 is chosen. If |f(x0)| < ε, then terminate and output x0 at the
approximate zero of f. Then, do n := 0;

1. If |an − bn| < ε, then terminate and output xn at the approximate zero of f ;
2. Compute yn by the first step of (3.1). If |f(yn)| < ε, then terminate and output yn at the

approximate zero of f ;
3. Compute zn by the second step of (3.1). If |f(zn)| < ε, then terminate and output zn at the

approximate zero of f ;
4. Compute xn+1 by the third step of (3.1). If |f(xn+1)| < ε, then terminate and output xn+1 at

the approximate zero of f ;
5. Compute kn+1 = an−bn

2
by the Bisection method. If |f(kn+1)| < ε, then terminate and output

kn+1 at the approximate zero of f ;
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6. If xn+1 ∈ [an, bn], then
If f(xn+1)f(kn+1) < 0, then an+1 := min(xn+1, kn+1), bn+1 := max(xn+1, kn+1), do n := n+1,
and go to 1.
If f(xn+1)f(kn+1) > 0, and f(xn+1)f(an) < 0, then bn+1 := min(xn+1, kn+1), an+1 :=
an, xn+1 := bn+1, do n := n + 1, and go to 1.
If f(xn+1)f(kn+1) > 0, and f(xn+1)f(an) > 0, then an+1 := max(xn+1, kn+1), bn+1 :=
bn, xn+1 := an+1, do n := n + 1, and go to 1.
else if xn+1 is not in [an, bn], then
If f(an)f(kn+1) < 0, then bn+1 := kn+1, an+1 := an, xn+1 = argmin{|f(an)|, |f(kn+1)|}, do
n := n + 1, and go to 1;
If f(bn)f(kn+1) < 0, then an+1 := kn+1, bn+1 := bn, xn+1 = argmin{|f(bn)|, |f(kn+1)|}, do
n := n + 1, and go to 1.

Table 1. Test nonlinear function, their roots and the initial guesses
Test Functions Roots Initial guesses
f1(x) = x5 − x2 + 7x− 41 1.9878112719284 . . . 1.97
f2(x) =

√
cos(x2)− ln(x

√
x) 1.217890626801 . . . 1.24

f3(x) = tan(sin(x2))× sin(x)− x3 + 17 2.581711667829 . . . 2.8
f4(x) = cos(x) + ln(x)×

√
x3 + 7− 10 3.845238953520 . . . 5

f5(x) = arcsin(x)(x2 + x− 3) + x5 − x + 1 0.969472186368 . . . 1
f6(x) = arcsin(x)(x2 + x− 3) + x5 − x + 1 −1.130365453500 . . . -1.2

Table 2. Comparison of some derivative-free methods
f (2.1) (2.3) (2.4) PM1 PM2
f1 IT 10 4 4 3 3

TNE 20 12 16 12 12
|f | 0.2e-73 0.6e-141 0.8e-199 0.2e-150 0.3e-250
CPU-time 0.52 0.43 0.49 0.45 0.44

f2 IT 8 4 4 3 3
TNE 16 12 16 12 12
|f | 0.3e-24 0.1e-121 0.3e-80 0.2e-171 0.6e-90
CPU-time 0.74 0.47 0.55 0.50 0.71

f3 IT 8 5 4 3 3
TNE 16 15 16 12 12
|f | 0.3e-8 0.4e-108 0.3e-110 0.3e-88 0.1e-137
CPU-time 0.54 0.65 0.61 0.54 0.52

f4 IT 8 5 3 3 3
TNE 16 15 12 12 12
|f | 0.1e-43 0.6e-111 0.8e-61 0.1e-136 0.1e-146
CPU-time 0.77 0.62 0.64 0.53 0.73

f5 IT 8 4 3 3 3
TNE 16 12 12 12 12
|f | 0.9e-112 0.1e-169 0.2e-139 0.3e-222 0.2e-259
CPU-time 0.50 0.47 0.41 0.52 0.50

f6 IT 9 4 4 3 3
TNE 18 12 16 12 12
|f | 0.6e-8 0.2e-110 0.5e-54 0.1e-150 0.4e-93
CPU-time 0.57 0.47 0.55 0.52 0.50
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5. CONCLUDING REMARKS

There are many situations at which the application of derivative-involved methods
(schemes with the direct use of a derivative to proceed) is limited. On the other hand,
multi-point iteration overcome many disadvantages of one-point methods in the view-
point of the convergence rate and efficiency index. Due to these and the availability
of high-speed computers in computations, we have given some families of without
memory iterations free from derivative, which include four function evaluations per
full cycle to proceed.

The analytical proofs of the main contributions were written and they have shown
the seventh-order convergence for the proposed methods of families. It was discussed
that, in terms of the computational point of view, our schemes in this paper arrive at
1.6265 as their efficiency indices, which is better than many available derivative-free
methods in the literature. Finally, we have employed a lot of numerical examples to
reveal the fast convergence of our families by comparing with the famous methods in
the literature.
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