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1. INTRODUCTION

Nonlinear hydrodynamic equations are of constant interest from the classical works
by B. Riemann, who had extensively studied them in the general three-dimensional
case, having paid special attention to their one-dimensional spatial reduction, for
which he devised the generalized method of characteristics and Riemann invariants.
These methods appeared to be very effective [1] in investigating many types of nonlin-
ear spatially one-dimensional systems of hydrodynamical type and, in particular, the
characteristics method in the form of a “reciprocal” transformation of variables has
been used recently in studying a so called Gurevich-Zybin system [2, 3] in [9] and a
Whitham type system in [5,6]. Moreover, this method was further effectively applied
to studying solutions to a generalized [5] (owing to D. Holm and M. Pavlov) Riemann
type hydrodynamical system

DN
t u = 0, Dt := ∂/∂t+ u∂/∂x, (1.1)
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where N ∈ Z+, u ∈ M1 ⊂ C∞(R/2πZ;R) is a smooth function on a periodic func-
tional manifold M1 and t ∈ R is the evolution parameter. Making use of novel meth-
ods, devised in [8, 18, 25] and based both on the spectral theory [10, 17, 19, 20] and
differential algebra techniques, the Lax type representations for the cases N = 1, 4
were constructed in explicit form.

In this work we are interested in constructing a so called vertex operator repre-
sentation [14,15,22,24] for solutions to the Gurevich-Zybin hydrodynamical hierarchy
naturally related to the Riemann type hydrodynamical flow (1.1) on a periodic func-
tional manifold M2 ⊂ C∞(R/2πZ;R2) at N = 2:{

Dtu = ut + uux = v,

Dtv = vt + uvx = 0,
(1.2)

making use of an approach recently devised in [23, 24] for the case of the classical
AKNS hierarchy of integrable flows, and which can be easily generalized for treating
the problem for arbitrary integers N ∈ Z+. Namely, the following proposition, effec-
tively describing the whole infinite hierarchy of the Gurevich-Zybin type commuting
to each other Hamiltonian flows, holds.

Proposition 1.1. The Gurevich-Zybin hydrodynamical system (1.2) possesses an in-
finite hierarchy

d(u, v)ᵀ/dtj = Kj [u, v],

j ∈ N, of commuting to each other Hamiltonian flows Kj : M2 → T (M2), repre-
sentable in the following vertex operator form:

α−(x, τ ;λ) = ux + [u2x − 2vx + λ−1α−(x, τ ;λ)]1/2,

β+(x, τ ;λ) = ux − [u2x − 2vx + λ−1β+(x, τ ;λ)]1/2,
(1.3)

where

α−(x, τ ;λ) = exp(−Dλ)α(x, τ), β+(x, τ ;λ) := exp(Dλ)β(x, τ),

Dλ :=
∑
j∈N

λ−j
d

jdtj
, α(x, τ) = ux(x, τ) + ϕ(x, τ),

β(x, τ) = ux(x, τ)− ϕ(x, τ), ϕ(x, τ) :=
√
u2x(x, τ)− 2vx(x, τ),

(1.4)

τ := (t1, t2 = t, t3, . . .) ∈ RN and |λ| → ∞.

2. A VERTEX OPERATOR ANALYSIS

We begin with a Lax type linear spectral problem [4, 5, 9] for the equation (1.1) at
N = 2: {

Dtu = ut + uux = v,

Dtv = vt + uvx = 0,
(2.1)
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defined on the space of smooth real-valued 2π-periodic functions (u, v)ᵀ ∈ M ⊂
C∞(R/2πZ;R2):

df/dx = `[u, v;λ]f, `[u, v;λ] :=

(
−λux/2 −vx
λ2/2 λux/2

)
, (2.2)

where, by definition, v := Dtu, f ∈ L∞(R/2πZ;C2) and λ ∈ C is a spectral parameter.
Assume that a vector function (u, v)> ∈ M depends parametrically on the infinite
set τ := {t1, t2, t3, . . .} ∈ RZ+ in such a way that the generalized Floquet spectrum
[10, 16, 19] σ(`) := {λ ∈ C : supx∈R ‖f(x;λ)‖∞ <∞} of the linear problem (2.2) per-
sists in being parametrically iso-spectral, that is dσ(`)/dtj = 0 for all tj ∈ R, j ∈ N.
The iso-spectrality condition imbedded in problem (2.2) gives rise [14,16–18,21] nat-
urally to a hierarchy of commuting to each other nonlinear bi-Hamiltonian dynamical
systems on the functional manifold M in the general form

d

dtj
(u(t), v(t))> = −ϑgradHj [u, v] := Kj [u(t), v(t)], (2.3)

where Kj : M2 → T (M2) and Hj ∈ D(M2), j ∈ N, are, respectively, vector fields
and conservation laws on the manifold M2, which were before described in [4, 5, 8],

ϑ :=

(
0 ∂
∂ 0

)
(2.4)

is a Poisson structure on the manifold M2 and, by definition,(
u(τ)

v(τ)

)
:=

(
u(x, t1, t2, t3, . . .)

v(x, t1, t2, t3, . . .)

)
(2.5)

for τ ∈ RN.

It is well known [10, 16, 17, 19] that the Casimir invariants, determining conser-
vation laws for dynamical systems (2.3), are generated by the suitably normalized
monodromy matrix S̃(x;λ) ∈ End C2 of the linear problem (2.2)

S̃(x;λ) = k(λ)S(x;λ)− k(λ)

2
trS(x;λ), (2.6)

where F (y, x;λ) ∈ End C2 is the matrix solution to the Cauchy problems

d

dy
F (y, x;λ) = `(y;λ)F (y, x;λ), F (y, x;λ)|y=x = I, (2.7)

for all λ ∈ C and x, y ∈ R, where I ∈End C2 is the identity matrix, S(x;λ) :=
F (x+2π, x;λ) is the usual monodromy matrix for equation (2.7). Here the parameter
k(λ) ∈ C is invariant with respect to flows (2.3) and is chosen in such a way that the
asymptotic condition

S̃(x;λ) ∈ G̃− (2.8)
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as λ → ∞ holds for all x ∈ R. The latter allows us to define the corresponding mo-
mentum mapping ` :M2 → G̃− and to imbed the whole hierarchy of the Hamiltonian
flows (2.3), related with the linear problem (1.1), into the standard [14, 16–18, 21]
Lie-algebraic scheme. Here G̃− ⊂ G̃, where G̃ := G̃+ ⊕ G̃− is the natural splitting into
two affine subalgebras of positive and negative λ-expansions of the centrally extended
[16,26] affine current sl(2)-algebra Ĝ := G̃ ⊕ C:

G̃ :=
{
a =

∑
j∈Z, j�∞

a(j) ⊗ λj : a(j) ∈ C∞ (R/2πZ; sl(2;C))
}
. (2.9)

The latter is endowed with the Lie commutator

[(a1, c1), (a2, c2)] := ([a1, a2], 〈a1, da2/dx〉), (2.10)

where the scalar product is defined as

〈a1, a2〉 := resλ=∞

2π∫
0

tr(a1a2)dx (2.11)

for any two elements a1, a2 ∈ G̃ with “res” and “tr” being the usual residue and trace
maps, respectively. As the spectrum σ(`) ⊂ C of the problem (2.2) is supposed to
be parametrically independent, flows (2.3) are naturally associated with evolution
equations

dS̃/dtj = [(λj+1S̃)+, S̃] (2.12)

for all j ∈ N, which are generated by the set I(Ĝ∗) of Casimir invariants of the
coadjoint action of the current algebra Ĝ on a given element `(x;λ) ∈ G̃∗− ∼= G̃+
contained in the space of smooth functionals D(Ĝ). In particular, a functional γ(λ) ∈
I(Ĝ) if and only if

[S̃(x;λ), `(x;λ)] +
d

dx
S̃(x;λ) = 0, (2.13)

where the gradient S̃(x;λ) := gradγ(λ)(`) ∈ G̃− is defined with respect to the scalar
product (2.11) by means of the variation

δγ(λ) := 〈gradγ(λ)(`), δ`〉 . (2.14)

To construct the solution to matrix equation (2.13), we find a preliminary partial
solution F̃ (y, x;λ) ∈ End C2, x, y ∈ R, to equation (2.7) satisfying the asymptotic
Cauchy data

F̃ (y, x;λ)|y=x = I+O(1/λ) (2.15)

as λ→∞. It is easy to check that

F̃ (y, x;λ) =

(
ẽ1(y, x;λ) − β̃(y;λ)λ ẽ2(y, x;λ)

− λ
α̃(y;λ) ẽ1(y, x;λ) ẽ2(y, x;λ)

)
, (2.16)
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is an exact functional solution to (2.7) satisfying condition (2.15), where we have
defined

ẽ1(y, x;λ) := exp
{λ
2
[u(x)− u(y)] + λ

y∫
x

α̃dv(s)
}
,

ẽ2(y, x;λ) := exp
{λ
2
[u(y)− u(x)]− λ

2

y∫
x

β̃ds
}
,

(2.17)

with the vector-functions α± ∈ C∞(R/2πZ;R) satisfying the following determining
functional relationships:

α̃ = ux + (u2x − 2vx + ξα̃)1/2,

β̃ = ux − (u2x − 2vx + ξβ̃)1/2,
(2.18)

as ξ := 1/λ → 0 and existing when the condition ϕ(x, τ) :=
√
u2x − 2vx 6= 0 on the

manifold M2 at τ = ∅ ∈ RN.

Remark 2.1. It is easy to observe that the condition ϕ(x, τ) :=
√
u2x − 2vx 6= 0

holds for all τ ∈ RN, if ϕ(x, τ)|τ=∅ 6= 0.

The fundamental matrix F (y, x;λ) ∈ End C2 can be represented for all x, y ∈ R
in the form

F (y, x;λ) = F̃ (y, x;λ)F̃−1(x, x;λ). (2.19)

Consequently, if one sets y = x+ 2π in this formula and defines the expression

k(λ) := λ−1[ẽ1(x+ 2π, x;λ)− ẽ2(x+ 2π, x;λ)]−1, (2.20)

it follows from (2.6), (2.16) and (2.19) that the exact functional matrix representation

S̃(x;λ) =

 [α̃(x;λ)+β̃(x;λ)]

2λ[α̃(x;λ)−β̃(x;λ)]
α̃β̃

λ2[α̃(x;λ)−β̃(x;λ)]

− 1
[α̃(x;λ)−β̃(x;λ)]

[β̃(x;λ)+α̃(x;λ)]

2λ[β̃(x;λ)−α̃(x;λ)]

 , (2.21)

satisfies the necessary condition (2.8) as λ→∞.

Remark 2.2. The invariance of the expression (2.20) with respect to the generating
vector field (2.3) on the manifold M derives from the representation (2.19), equations
(2.13) and

d

dτ
F̃ (y, x0;µ) =

λ3

µ− λ
S̃(x;λ)F̃ (y, x0;µ), (2.22)

which follows naturally from the determining matrix flows (2.12) upon applying the
translation y → y + 2π.

The matrix expression (2.21) gives rise to the following important functional re-
lationships:

1− λ(s̃11 − s̃22)
2s̃21

= α̃,
−2λ2s̃12

1− λ(s̃11 − s̃22)
= β̃, (2.23)
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which allow us to introduce in a natural way the vertex operator vector fields

X±λ = exp(±Dλ), Dλ :=
∑
j∈N

λ−j
d

jdtj
, (2.24)

acting on an arbitrary smooth function η ∈ C∞(RN;R) by means of the shifting
mappings:

X±λ η(x, t1, t2, . . . , tj , . . .) := η±(x, τ ;λ) =

= η(x, t1 ± 1/λ, t2 ± /(2λ2), t3 ± 1/(3λ3), . . . , tj ± 1/(jλj), . . .)
(2.25)

as λ→∞. Namely, the following proposition holds.

Proposition 2.3. The functional vertex operator expressions

α̃(x, τ ;λ) = X−λ α(x, τ) = α−(x, τ ;λ),

β̃(x, τ ;λ) = X+
λ β(x, τ)) = β+(x, τ ;λ)

(2.26)

as ξ = 1/λ→ 0 solve the functional equations (2.18), that is

α− = ux + (u2x − 2vx + ξα−)1/2,

β+ = ux − (u2x − 2vx + ξβ+)1/2.
(2.27)

Proof. To state this proposition it is enough to show that the following relationships
hold:

d

dξ

[
1− λ(s̃11 − s̃22)

2s̃21

]
λ=1/ξ

=
d

dτ

[
1− λ(s̃11 − s̃22)

2s̃21

]
λ=1/ξ

,

d

dξ

[
−8λ2s̃12

1− λ(s̃11 − s̃22)

]
λ=1/ξ

=
d

dτ

[
−8λ2s̃12

1− λ(s̃11 − s̃22)

]
λ=1/ξ

(2.28)

as ξ → 0, where by definition

d

dτ
:=

d

dξ
Dλ

∣∣∣∣
λ=1/ξ

=
∑
j∈N

ξj−1
d

dtj
(2.29)

is a generating evolution vector field. Before doing this we find the evolution equation

d

dτ
S̃(x;µ) =

[
λ3

d

dλ
S̃(x;µ), S̃(x;λ)

]
(2.30)

on the matrix S̃(x;µ) as µ, λ → ∞, which entails the following differential relation-
ships:

ds̃11/dτ = λ3(s̃21ds̃12/dλ− s̃12ds̃21/dλ),
ds̃22/dτ = λ3(s̃12ds̃21/dλ− s̃21ds̃12/dλ),

ds̃22/dτ = λ3
[
s̃12

d

dλ
(s̃11 − s̃22)− (s̃11 − s̃22)

ds̃12
dλ

]
,

ds̃11/dτ = λ3
[
s̃21

d

dλ
(s̃22 − s̃11)− (s̃22 − s̃11)

ds̃21
dλ

]
.

(2.31)
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Using these relationships (2.31), one can easily obtain by means of simple, but rather
cumbersome calculations, the necessary relationships (2.28). As a direct consequence
the vertex operator representations (2.26) for the vector functions α̃, β̃ ∈ M2 ⊂
C(RZ+ ;R) hold.

Now we take into account that, owing to the determining functional representa-
tions (2.18), that the limits

lim
λ→∞

α−(x, τ ;λ) = ux(x, τ) + ϕ(x, τ),

lim
λ→∞

β+(x, τ ;λ) = ux(x, τ)− ϕ(x, τ), ϕ(x, τ) :=
√
u2x(x, τ)− 2vx(x, τ),

(2.32)

exist on the manifold M2. Moreover, having iterated the functional relationships
(2.18), one can find that

X−λ α = α− = ux + ϕ+ ξ
(uxx
ϕ

+
ϕx
ϕ

)
+

+
ξ2

2

(u2xx + 2uxxϕx − u3xϕ
ϕ3

+
ϕxxϕ+ 5ϕ2

x

ϕ3

)
+O(ξ3),

X+
λ β = β+ = ux − ϕ− ξ

(uxx
ϕ
− ϕx

ϕ

)
−

− ξ2

2

(u2xx − 2uxxϕx + u3xϕ

ϕ3
+
ϕxxϕ+ 5ϕ2

x

ϕ3

)
+O(ξ3),

(2.33)

which immediately yield the higher Riemann type commuting nonlinear Lax inte-
grable dispersive dynamical systems on the functional manifold M2.

Now, based on Proposition 2.3, one can formulate our main result, effectively
describing the whole infinite hierarchy of the Gurevich-Zybin type commuting to
each other Hamiltonian flows, in the following form.

Proposition 2.4. The Gurevich-Zybin hydrodynamical system (1.2) possesses an in-
finite hierarchy

d(u, v)ᵀ/dtj = Kj [u, v],

j ∈ N, of commuting to each other Hamiltonian flows Kj : M2 → T (M2), repre-
sentable in the following vertex operator form:

α−(x, τ ;λ) = ux + [u2x − 2vx + λ−1α−(x, τ ;λ)]1/2,

β+(x, τ ;λ) = ux − [u2x − 2vx + λ−1β+(x, τ ;λ)]1/2,
(2.34)

where

α−(x, τ ;λ) = exp(−Dλ)α(x, τ), β+(x, τ ;λ) := exp(Dλ)β(x, τ),

Dλ :=
∑
j∈N

λ−j
d

jdtj
, α(x, τ) = ux(x, τ) + ϕ(x, τ),

β(x, τ) = ux(x, τ)− ϕ(x, τ), ϕ(x, τ) :=
√
u2x(x, τ)− 2vx(x, τ),

(2.35)

τ := (t1, t2, t3, . . .) ∈ RN and |λ| → ∞.
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As a simple corollary of relationship (2.34) one finds that

lim
λ→∞

[α−(x, τ ;λ)± β+(x, τ ;λ)]/2 =

{
ux(x, τ),

ϕ(x, τ),
(2.36)

giving rise to the following infinite hierarchy of Hamiltonian vector fields on the func-
tional manifold M2:

d

dt1

(
ux
ϕ

)
=

(
−uxx/ϕ
−ϕx/ϕ

)
,
d

dt2

(
ux
ϕ

)
=

(
(u2xx + 7ϕ2

x)/ϕ
3

(2u3xϕ− 4uxϕx)/ϕ3

)
, . . . , (2.37)

and so on, where ϕ =
√
u2x − 2vx and we took into account that owing to the following

the asymptotic expansions hold

X−λ α(x, τ ;λ) = ux + ϕ− ξ(ux,t1 + ϕt1)+

+
ξ2

2
(ux,t1,t1 + ϕt1,t1 − ux,t2 − ϕt2) +O(ξ3),

X+
λ β(x, τ ;λ) = ux − ϕ+ ξ(ux,t1 − ϕt1)+

+
ξ2

2
(ux,t1,t1 − ϕt1,t1 + ux,t2 − ϕt2) +O(ξ3)

(2.38)

as ξ = 1/λ→ 0.
It is worth also mentioning that the scheme devised above for finding the corre-

sponding vertex operator representations for the Gurevich-Zybin (2.1) can be similarly
generalized for treating other equations of the infinite hierarchy (1.1) when N ≥ 3,
having taking into account the existence of their suitable Lax type representations
found before in recent works [4, 5, 25].

3. CONCLUDING REMARKS

The vertex operator functional representations of the solution to the Riemann type
hydrodynamical equation (2.1) in the form (2.27) is crucially based on the represen-
tations (2.23) and evolution equations (2.28), which provide a very straightforward
and transparent explanation of many of “miraculous” vertex operator calculations pre-
sented before both in [14, 15] and in [22]. It should be noted that the effectiveness of
our approach to studying the vertex operator representation of the Riemann type hi-
erarchy owes much to the important exact representation (2.21) for the corresponding
monodromy matrix, whose properties are described by means of applying the standard
[16,17,19,21] Lie-algebraic techniques. As an indication of possible future research, it
should also be mentioned that it would be interesting to generalize the vertex operator
approach devised in this work to other linear spectral problems such as those related
to dynamical systems with a parametrical spectral [12, 18, 19] dependence, spatially
two-dimensional [11], Pavlov’s and heavenly [13] dynamical systems.
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