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1. INTRODUCTION

Fractional derivatives provide an excellent tool for the description of memory and
hereditary properties of various materials and processes. These characteristics of the
fractional derivatives make the fractional-order models more realistic and practical
than the classical integer-order models. In recent years, boundary value problems for
nonlinear fractional differential equations have been addressed by several researchers.
As a matter of fact, fractional differential equations arise in many engineering and
scientific disciplines such as physics, chemistry, biology, economics, control theory,
signal and image processing, biophysics, blood flow phenomena, aerodynamics, fitting
of experimental data, etc. [26, 32–34]. For some recent development on the topic, see
[1–13,15,27,29,35,36] and the references therein.
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As a first problem in this paper we discuss the existence and uniqueness of solutions
for a boundary value problem of nonlinear fractional differential equations of order
q ∈ (1, 2] with nonlocal and integral boundary conditions given by:{

cDqx(t) = f(t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = x0 + g(x), x(1) = αIpx(η), 0 < η < 1,
(1.1)

where cDq denotes the Caputo fractional derivative of order q, f : [0, 1]×R→ R is a
given continuous function, g : C([0, 1],R)→ R, α ∈ R is such that α 6= Γ(p+2)/ηp+1,
Γ is the Euler gamma function and Ip is the Riemann-Liouville fractional integral of
order p. The fractional integral boundary conditions were introduced recently in [24].

Nonlocal conditions were initiated by Bitsadze [16]. As remarked by Byszewski
[18–20], the nonlocal condition can be more useful than the standard initial condition
to describe some physical phenomena. For example, g(x) may be given by g(x) =∑p
i=1 cix(ti) where ci, i = 1, . . . , p, are given constants and 0 < t1 < . . . < tp ≤ T. For

recent papers on nonlocal fractional boundary value problems the interested reader is
referred to [10,14,15,37] and the references cited therein.

In Section 3 we give some sufficient conditions for the uniqueness of solutions and
for the existence of at least one solution of problem (1.1). The first result is based
on Banach’s contraction principle and the second on a fixed point theorem due to D.
O’Regan. A concrete example is also provided to illustrate the possible application of
the established analytical results.

In Section 4, we extend the results to cover the multi-valued case, considering
the following boundary value problem for fractional order differential inclusions with
nonlocal and fractional integral boundary conditions{

cDqx(t) ∈ F (t, x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = x0 + g(x), x(1) = αIpx(η), 0 < η < 1,
(1.2)

where cDq denotes the Caputo fractional derivative of order q, F : [0, 1]×R→ P(R)
is a multivalued map, P(R) is the family of all subsets of R.

Existence results for the problem (1.2), are presented when the right hand side is
convex as well as nonconvex valued. The first result relies on the Nonlinear Alternative
for contractive maps. In the second result, we shall combine the nonlinear alternative
of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan
and Colombo for lower semicontinuous multivalued maps with nonempty closed and
decomposable values.

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel, in Section 3 we prove our main results for the single-valued
case and in Section 4 we prove our main results for the multi-valued case.

2. PRELIMINARIES

Let us recall some basic definitions of fractional calculus [26,32,34].
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Definition 2.1. For an at least n-times differentiable function g : [0,∞) → R, the
Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

t∫
0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

t∫
0

g(s)

(t− s)1−q
ds, q > 0,

provided the right hand side is pointwise defined on (0,∞).

Definition 2.3. The Riemann-Liouville fractional derivative of order q > 0 for a
continuous function g : (0,∞)→ R is defined by

Dqg(t) =
1

Γ(n− q)

(
d

dt

)n t∫
0

g(s)

(t− s)q−n+1
ds, n = [q] + 1,

provided the right hand side is pointwise defined on (0,∞).

Lemma 2.4. For q > 0, the general solution of the fractional differential equation
cDqx(t) = 0 is given by

x(t) = c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, . . . , n− 1 (n = [q] + 1).

In view of Lemma 2.4, it follows that

Iq cDqx(t) = x(t) + c0 + c1t+ c2t
2 + . . .+ cn−1t

n−1 (2.1)

for some ci ∈ R, i = 0, 1, . . . , n− 1 (n = [q] + 1).

To define the solution for the problem (1.1), we find the solution for its associated
linear problem.

Lemma 2.5. Assume that α 6= Γ(p+ 2)

ηp+1
. For a given y ∈ C([0, 1],R) the unique

solution of the boundary value problem{ cDqx(t) = y(t), 0 < t < 1, 1 < q ≤ 2,

x(0) = x0 + g(x), x(1) = αIpx(η), 0 < η < 1,
(2.2)
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is given by

x(t) =
1

Γ(q)

t∫
0

(t− s)q−1y(s)ds−

− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1y(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1y(r)drds+

+ (1− t)[x0 + g(x)].

(2.3)

Proof. For some constants c0, c1 ∈ R, we have [26]

x(t) =

t∫
0

(t− s)q−1

Γ(q)
y(s)ds− c0 − c1t. (2.4)

From x(0) = x0 + g(x) we have c0 = −(x0 + g(x)). Using the Riemann-Liouville
integral of order p for (2.4) we have

Ipx(t) =

t∫
0

(t− s)p−1

Γ(p)

 s∫
0

(s− r)q−1

Γ(q)
y(r)dr − c0 − c1s

 ds =

=
1

Γ(p)

1

Γ(q)

t∫
0

s∫
0

(t− s)p−1(s− r)q−1y(r)drds− c0
tp

Γ(p+ 1)
− c1

tp+1

Γ(p+ 2)
.

Applying the second boundary condition of (2.2) we get

c1 =
Γ(p+ 2)

[Γ(p+ 2)− αηp+1]

 1∫
0

(1− s)q−1

Γ(q)
y(s)ds −

− α

Γ(p)Γ(q)

η∫
0

s∫
0

(η − s)p−1(s− r)q−1g(r)drds+
Γ(p+ 1)− αηp

Γ(p+ 1)
[x0 + g(x)]

 =

=
Γ(p+ 2)

[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1

Γ(q)
y(s)ds−

− αp(p+ 1)

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1g(r)drds+ [x0 + g(x)].

Substituting in (2.4) the values of c0 and c1, we obtain (2.3).
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We denote by C = C([0, 1],R) the Banach space of all continuous functions from
[0, 1]→ R endowed with a topology of uniform convergence with the norm defined by
‖x‖ = sup{|x(t)| : t ∈ [0, 1]}.

In view of Lemma 2.5, we define an operator F : C → C by

(Fx)(t) =
1

Γ(q)

t∫
0

(t− s)q−1f(s, x(s))ds−

− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(s, x(s))ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r, x(r))drds+

+ (1− t)[x0 + g(x)], t ∈ [0, 1].

Define two operators from C → C, respectively, by

(F1x)(t) =

=
1

Γ(q)

t∫
0

(t− s)q−1f(s, x(s))ds−

− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(s, x(s))ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r, x(r))drds, t ∈ [0, 1].

(2.5)

and
(F2x)(t) = (1− t)[x0 + g(x)], t ∈ [0, 1]. (2.6)

Clearly
(Fx)(t) = (F1x)(t) + (F2x)(t), t ∈ [0, 1]. (2.7)

3. EXISTENCE RESULTS – THE SINGLE-VALUED CASE

Theorem 3.1. Let f : [0, 1]× R→ R be a continuous function. Assume that:

(A1) |f(t, x)− f(t, y)| ≤ L|x− y|, for all t ∈ [0, 1], L > 0, x, y ∈ R;
(A2) there exist a positive constant ` < 1/2 and a continuous function φ : [0,∞) →

(0,∞) such that φ(z) ≤ `z and |g(u)−g(v)| ≤ φ(‖u−v‖) for all u, v ∈ C([0, 1]);
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(A3)

γ =

[
L

Γ(q + 1)

{
1 +

Γ(p+ 2)

|Γ(p+ 2)− αηp+1|

}
Lαηp+qΓ(p+ 2)

Γ(p+ q + 1)|Γ(p+ 2)− αηp+1|
+ 2`

]
< 1.

Then the boundary value problem (1.1) has a unique solution.

Proof. For x, y ∈ C and for each t ∈ [0, 1], from the definition of F and assumptions
(A1) and (A2), we obtain

|(Fx)(t)− (Fy)(t)| ≤

≤ 1

Γ(q)

t∫
0

(t− s)q−1|f(s, x(s))− f(s, y(s))|ds+

+
Γ(p+ 2)t

Γ(q)|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1|f(s, x(s))− f(s, y(s))|ds+

+
αp(p+ 1)t

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η−s)p−1(s−m)q−1|f(m,x(m))−f(m, y(m))|dmds+

+ |1− t||g(x)− g(y)| ≤

≤ L‖x− y‖

 1

Γ(q)

t∫
0

(t− s)q−1ds+
Γ(p+ 2)

Γ(q)|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1ds +

+
αp(p+ 1)

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s−m)q−1dmds

+

+ 2`‖x− y‖ =

= L‖x− y‖
{

1

Γ(q + 1)
+

1

Γ(q + 1)

Γ(p+ 2)

|Γ(p+ 2)− αηp+1|
+

+
1

Γ(q + 1)

αp(p+ 1)ηp+qB(q + 1, p)

|Γ(p+ 2)− αηp+1|

}
+ 2`‖x− y‖ =

= L‖x− y‖
{

1

Γ(q + 1)
+

1

Γ(q + 1)

Γ(p+ 2)

|Γ(p+ 2)− αηp+1|
+

+
αηp+qΓ(p+ 2)

Γ(p+ q + 1)|Γ(p+ 2)− αηp+1|

}
+ 2`‖x− y‖ ≤

≤
[

L

Γ(q + 1)

{
1 +

Γ(p+ 2)

|Γ(p+ 2)− αηp+1|

}
+

+
Lαηp+qΓ(p+ 2)

Γ(p+ q + 1)|Γ(p+ 2)− αηp+1|
+ 2`

]
‖x− y‖,
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where we used the computation

η∫
0

s∫
0

(η − s)p−1(s− r)q−1drds =
1

q
ηp+qB(q + 1, p),

where B is the beta function and the property of beta function B(q + 1, p) =
Γ(q + 1)Γ(p)

Γ(p+ q + 1)
. Hence

‖Fx− Fy‖ ≤ γ‖x− y‖.

As γ < 1, by (A3), F is a contraction map from the Banach space C into itself. Thus,
the conclusion of the theorem follows by the contraction mapping principle (Banach
fixed point theorem).

Example 3.2. Consider the following fractional boundary value problem
cD3/2x(t) =

1

(t+ 2)2
|x|

1 + |x|
+ 1 + sin2 t, t ∈ [0, 1],

x(0) =
1

2
+

1

16
x(ξ), x(1) =

√
3I5/2x

(
1

3

)
.

(3.1)

Here, q = 3/2, α =
√

3, p = 5/2, η = 1/3 and f(t, x) =
1

(t+ 2)2
|x|

1 + |x|
+ 1 + sin2 t.

As α =
√

3 6= Γ(p + 2)/ηp+1 = Γ(9/2)/(1/3)7/2 and |f(t, x) − f(t, y)| ≤ 1

4
|x − y|,

therefore, (A1) is satisfied with L =
1

4
. Since

γ =

[
L

Γ(q + 1)

{
1 +

Γ(p+ 2)

|Γ(p+ 2)− αηp+1|

}
+

+
Lαηp+qΓ(p+ 2)

Γ(p+ q + 1)|Γ(p+ 2)− αηp+1|
+ 2`

]
≈ 0.5017842 < 1,

by the conclusion of Theorem 3.1, the boundary value problem (3.1) has a unique
solution on [0, 1].

Next, we introduce the fixed point theorem which was established by O’Regan
in [30]. This theorem will be adopted to prove the next main result.

Lemma 3.3. Denote by U an open set in a closed, convex set C of a Banach space E.
Assume 0 ∈ U. Also assume that F (Ū) is bounded and that F : Ū → C is given by
F = F1 + F2, in which F1 : Ū → E is continuous and completely continuous and
F2 : Ū → E is a nonlinear contraction (i.e., there exists a nonnegative nondecreasing
function φ : [0,∞)→ [0,∞) satisfying φ(z) < z for z > 0, such that ‖F2(x)−F2(y)‖ ≤
φ(‖x− y‖) for all x, y ∈ Ū). Then, either:
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(C1) F has a fixed point u ∈ Ū ; or
(C2) there exist a point u ∈ ∂U and λ ∈ (0, 1) with u = λF (u), where Ū and ∂U,

respectively, represent the closure and boundary of U.

Let

Ωr = {x ∈ C([0, 1],R) : ‖x‖ < r},

and denote the maximum number by

Mr = max{|f(t, x)| : (t, x) ∈ [0, 1]× [−r, r]}.

Theorem 3.4. Let f : [0, 1] × R → R be a continuous function. Suppose that (A1)
and (A2) hold. In addition we assume that:

(A4) g(0) = 0;
(A5) there exists a nonnegative function p ∈ C([0, 1],R) and a nondecreasing function

ψ : [0,∞)→ (0,∞) such that

|f(t, u)| ≤ p(t)ψ(|u|) for any (t, u) ∈ [0, 1]× R;

(A6) sup
r∈(0,∞)

r

2|x0|+ p0ψ(r)
>

1

1− 2`
, where

p0 =
1

Γ(q)

1∫
0

(1− s)q−1p(s)ds+
Γ(p+ 2)

|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1p(s)ds+

+
αp(p+ 1)

|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1p(r)drds.

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. Consider the operator F : C → C as that defined in (2.7), that is,

(Fx)(t) = (F1x)(t) + (F2x)(t), t ∈ [0, 1],

where the operators F1 and F2 are defined respectively in (2.5) and (2.6).
From (A6) there exists a number r0 > 0 such that

r0
2|x0|+ p0ψ(r0)

>
1

1− 2`
. (3.2)
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We shall prove that the operators F1 and F2 satisfy all the conditions in Lemma 3.3.
Step 1. The operator F1 is continuous and completely continuous. We first show that
F1(Ω̄r0) is bounded. For any x ∈ Ω̄r0 we have

‖F1x‖ ≤
1

Γ(q)

t∫
0

(t− s)q−1|f(s, x(s))|ds+

+
Γ(p+ 2)t

Γ(q)|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1|f(s, x(s))|ds+

+
αp(p+ 1)t

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1|f(r, x(r))|drds ≤

≤Mr

 1

Γ(q)

1∫
0

(1− s)q−1ds+
Γ(p+ 2)

|Γ(p+ 2)− αηp+1|
1

Γ(q)

1∫
0

(1− s)q−1ds +

+
αp(p+ 1)

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1drds

 ≤

≤Mr

{
1

Γ(q + 1)
+

1

Γ(q + 1)

Γ(p+ 2)

|Γ(p+ 2)− αηp+1|
+

+
αηp+qΓ(p+ 2)

Γ(p+ q + 1)|Γ(p+ 2)− αηp+1|

}
.

This proves that F1(Ω̄r0) is uniformly bounded.
In addition for any t1, t2 ∈ [0, 1], t1 < t2, we have:

|(F1x)(t2)− (F1x)(t1)| ≤

≤ 1

Γ(q)

t1∫
0

[(t2 − s)q−1 − (t1 − s)q−1]|f(s, x(s))|ds+

+
1

Γ(q)

t2∫
t1

(t2 − s)q−1|f(s, x(s))|ds+

+
Γ(p+ 2)|t2 − t1|

Γ(q)|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1|f(s, x(s))|ds+
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+
αp(p+ 1)|t2 − t1|

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1|f(r, x(r))|drds ≤

≤ Mr

Γ(q)

t1∫
0

[(t2 − s)q−1 − (t1 − s)q−1]ds+
Mr

Γ(q)

t2∫
t1

(t2 − s)q−1ds+

+
MrΓ(p+ 2)|t2 − t1|

Γ(q)|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1ds+

+
Mrαp(p+ 1)|t2 − t1|

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1drds,

which is independent of x and tends to zero as t2 − t1 → 0. Thus, F1 is equicon-
tinuous. Hence, by the Arzelá-Ascoli Theorem, F1(Ω̄r0) is a relatively compact set.
Now, let xn ⊂ Ω̄r0 with ‖xn − x‖ → 0. Then the limit ‖xn(t) − x(t)‖ → 0 uni-
formly valid on [0, 1]. From the uniform continuity of f(t, x) on the compact set
[0, 1] × [−r0, r0] it follows that ‖f(t, xn(t)) − f(t, x(t))‖ → 0 is uniformly valid on
[0, 1]. Hence ‖F1xn − F1x‖ → 0 as n → ∞ which proves the continuity of F1. Hence
Step 1 is completely proved.
Step 2. The operator F2 : Ω̄r0 → C([0, 1],R) is contractive. This is a consequence
of (A2).

Step 3. The set F (Ω̄r0) is bounded. By (A2) and (A4) imply that

‖F2(x)‖ ≤ 2(|x0|+ `r0),

for any x ∈ Ω̄r0 . This, with the boundedness of the set F1(Ω̄r0) implies that the set
F (Ω̄r0) is bounded.
Step 4. Finally, it is to show that the case (C2) in Lemma 3.3 does not occur. To
this end, we suppose that (C2) holds. Then, we have that there exists λ ∈ (0, 1) and
x ∈ ∂Ωr0 such that x = λFx. So, we have ‖x‖ = r0 and

x(t) = λ

[
1

Γ(q)

t∫
0

(t− s)q−1f(s, x(s))ds−

− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(s, x(s))ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r, x(r))drds+

+ (t+ 1)[x0 + g(x)]

]
, t ∈ [0, 1].
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With hypotheses (A4)− (A6), we have

r0 ≤
ψ(r0)

Γ(q)

 t∫
0

(t− s)q−1p(s)ds+
Γ(p+ 2)

|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1p(s)ds+

+
αp(p+ 1)

|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1p(r)drds

+ 2(|x0|+ `r0),

which implies
r0 ≤ 2`r0 + 2|x0|+ p0ψ(r0).

Thus,
r0

2|x0|+ p0ψ(r0)
≤ 1

1− 2`
,

which contradicts (3.2). Consequently, we have proved that the operators F1 and F2

satisfy all the conditions in Lemma 3.3. Hence, the operator F has at least one fixed
point x ∈ Ω̄r0 , which is the solution of the boundary value problem (1.1). The proof
is complete.

4. EXISTENCE RESULTS – THE MULTI-VALUED CASE

Let us recall some basic definitions on multi-valued maps [21], [25].
For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed},

Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact},
and Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}. A multi-valued map
G : X → P(X) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X.
The map G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all
B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} <∞). G is called upper semi-continuous
(u.s.c.) on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and
if for each open set N of X containing G(x0), there exists an open neighborhood N0

of x0 such that G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively
compact for every B ∈ Pb(X). If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be
denoted by FixG. A multivalued map G : [0; 1] → Pcl(R) is said to be measurable if
for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.
Let L1([0, 1],R) be the Banach space of measurable functions x : [0, 1]→ R, which

are Lebesgue integrable and normed by ‖x‖L1 =
1∫
0

|x(t)|dt.
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Definition 4.1. A function x ∈ AC1([0, 1],R) is a solution of the problem (1.1) if
x(0) = x0 + g(x), x(1) = αIpx(η), and there exists a function f ∈ L1([0, 1],R) such
that f(t) ∈ F (t, x(t)) a.e. on [0, 1] and

x(t) =
1

Γ(q)

t∫
0

(t− s)q−1f(s)ds−

− Γ(p+ 2)t

Γ(q)|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1f(s)ds+

+
αp(p+ 1)t

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r)drds+

+ (1− t)[x0 + g(x)].

(4.1)

4.1. THE CARATHÉODORY CASE

Definition 4.2. A multivalued map F : [0, 1]×R→ P(R) is said to be Carathéodory if

(i) t 7−→ F (t, x) is measurable for each x ∈ R;
(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, 1].

Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, 1],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕα(t)

for all ‖x‖∞ ≤ α and for a.e. t ∈ [0, 1].

For each y ∈ C([0, 1],R), define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, 1]}.

The following lemma will be used in the sequel.

Lemma 4.3 ([28]). Let X be a Banach space. Let F : [0, T ] × R → Pcp,c(X) be an
L1− Carathéodory multivalued map and let Θ be a linear continuous mapping from
L1([0, 1], X) to C([0, 1], X). Then the operator

Θ ◦ SF : C([0, 1], X)→ Pcp,c(C([0, 1], X)), x 7→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C([0, 1], X)× C([0, 1], X).

To prove our main result in this section we will use the following form of the
Nonlinear Alternative for contractive maps [31, Corollary 3.8].
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Theorem 4.4. Let X be a Banach space, and D a bounded neighborhood of 0 ∈ X.
Let Z1 : X → Pcp,c(X) (here Pcp,c(X) denotes the family of all nonempty, compact
and convex subsets of X) and Z2 : D̄ → Pcp,c(X) two multi-valued operators satisfying

(a) Z1 is contraction, and
(b) Z2 is u.s.c and compact.

Then, if G = Z1 + Z2, either

(i) G has a fixed point in D̄ or
(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

Theorem 4.5. Assume that:

(H1) F : [0, 1]× R→ Pcp,c(R) is L1−Carathéodory multivalued map;
(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and

a function p ∈ L1([0, 1],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, 1]× R;

(H3) there exists a constant Lg < 1/2 such that

|g(x)− g(y)| ≤ Lg|x− y| for all x, y ∈ R;

(H4) there exists a number M > 0 such that

(1− 2Lg)M

Λψ(M) + 2|x0|
> 1, (4.2)

where

Λ =
1

Γ(q)

 1∫
0

(1− s)q−1p(s)ds+
Γ(p+ 2)

|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1p(s)ds +

+
αp(p+ 1)

|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1p(r)drds

 .
Then the boundary value problem (1.2) has at least one solution on [0, 1].
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Proof. Transform the problem (1.2) into a fixed point problem. Consider the operator
N : C([0, 1],R) −→ P(C([0, 1],R)) defined by

N (x) =

{
h ∈ C([0, 1],R) : h(t) =

1

Γ(q)

t∫
0

(t− s)q−1f(s)ds−

− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r)drds+

+ (1− t)[x0 + g(x)]

}
for f ∈ SF,x.

Now, we define two operators as follows: A : C([0, 1],R) −→ C([0, 1],R) by

Ax(t) = (1− t)(x0 + g(x)), (4.3)

and the multi-valued operator B : C([0, 1],R) −→ P(C([0, 1],R)) by

B(x) =

{
h ∈ C([0, 1],R) :

h(t) =
1

Γ(q)

t∫
0

(t− s)q−1f(s)ds−

− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r)drds

}
.

(4.4)

Then N = A + B. We shall show that the operators A and B satisfy all the
conditions of Theorem 4.4 on [0, 1]. For better readability, we break the proof into a
sequence of steps and claims.

Step 1. We show that A is a contraction on C([0, 1],R). Let x, y ∈ C([0, 1],R). Then

|Ax(t)−Ay(t)| = |1− t||g(x)− g(y)| ≤ 2|g(x)− g(y)| ≤ 2Lg|x− y|.

Taking supremum over t,

‖Ax−Ay‖ ≤ L0‖x− y‖, L0 = 2Lg < 1.

This shows that A is a contraction, since L0 < 1.
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Step 2. We shall show that the operator B is compact and convex valued and it is
completely continuous. This will be given in several claims.

Claim I. B maps bounded sets into bounded sets in C([0, 1],R). To see this, let
Bρ = {x ∈ C([0, 1],R) : ‖x‖ ≤ ρ} be a bounded set in C([0, 1],R). Then, for each
h ∈ B(x), x ∈ Bρ, there exists f ∈ SF,x such that

x(t) =
1

Γ(q)

t∫
0

(t− s)q−1f(s)ds− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r)drds.

Then for t ∈ [0, 1] we have

|h(t)| ≤ 1

Γ(q)

t∫
0

(t− s)q−1|f(s)|ds+

+
Γ(p+ 2)

Γ(q)|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1|f(s)|ds+

+
αp(p+ 1)

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1|f(r)|drds ≤

≤ ψ(‖x‖)

 1

Γ(q)

t∫
0

(t−s)q−1p(s)ds+
Γ(p+ 2)

Γ(q)|Γ(p+ 2)− αηp+1|

1∫
0

(1−s)q−1p(s)ds+

+
αp(p+ 1)

Γ(q)|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1p(r)drds

 .
Thus,

‖h‖ ≤ ψ(ρ)

Γ(q)

 1∫
0

(t− s)q−1p(s)ds+
Γ(p+ 2)

|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1p(s)ds +

+
αp(p+ 1)

|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1p(r)drds

 .
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Claim II. Next we show that B maps bounded sets into equi-continuous sets. Let
t′, t′′ ∈ [0, 1] with t′ < t′′ and x ∈ Bρ. For each h ∈ B(x), we obtain

|h(t′′)− h(t′)| ≤

≤

∣∣∣∣∣∣ψ(‖x‖)
t′∫

0

[
(t′′ − s)q−1 − (t′ − s)q−1

Γ(q)

]
p(s)ds+ ψ(‖x‖)

t′′∫
t′

(t′′ − s)q−1

Γ(q)
p(s)ds

∣∣∣∣∣∣+

+ ψ(‖x‖) Γ(p+ 2)|t′′ − t′|
|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1p(s)ds+

+ ψ(‖x‖) αp(p+ 1)|t′′ − t′|
|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1p(r)drds.

Obviously the right hand side of the above inequality tends to zero independently
of x ∈ Bρ as t′′ − t′ → 0. As B satisfies the above three assumptions, therefore
it follows by the Arzelá-Ascoli theorem that B : C([0, 1],R) → P(C([0, 1],R)) is
completely continuous.

Claim III. Next we prove that B has a closed graph. Let xn → x∗, hn ∈ B(xn) and
hn → h∗. Then we need to show that h∗ ∈ B(x∗). Associated with hn ∈ B(xn), there
exists fn ∈ SF,xn

such that for each t ∈ [0, 1],

hn(t) =
1

Γ(q)

t∫
0

(t− s)q−1fn(s)ds− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1fn(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1fn(r)drds.

Thus it suffices to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0, 1],

h∗(t) =
1

Γ(q)

t∫
0

(t− s)q−1f∗(s)ds−
Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f∗(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f∗(r)drds.
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Let us consider the linear operator Θ : L1([0, 1],R)→ C([0, 1],R) given by

f 7→ Θ(f)(t) =

=
1

Γ(q)

t∫
0

(t− s)q−1f(s)ds− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r)drds.

Observe that

‖hn(t)− h∗(t)‖ =

=

∥∥∥∥∥∥ 1

Γ(q)

t∫
0

(t− s)q−1(fn(s)− f∗(s))ds −

− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1(fn(s)− f∗(s))ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1(fn(r)− f∗(r))drds

∥∥∥∥∥∥→ 0,

as n→∞.
Thus, it follows by Lemma 4.3 that Θ◦SF is a closed graph operator. Further, we

have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =
1

Γ(q)

t∫
0

(t− s)q−1f∗(s)ds−
Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f∗(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f∗(r)drds

for some f∗ ∈ SF,x∗ . Hence B has a closed graph (and therefore has closed values).
As a result B is compact valued.

Therefore, the operators A and B satisfy all the conditions of Theorem 4.4 and
hence an application of it yields that either condition (i) or condition (ii) holds. We
show that the conclusion (ii) is not possible. If x ∈ λA(x) +λB(x) for λ ∈ (0, 1), then
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there exists f ∈ SF,x such that

x(t) =
1

Γ(q)

t∫
0

(t− s)q−1f(s)ds− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(s)ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(r)drds+

+ (1− t)[x0 + g(x)], t ∈ [0, 1].

Consequently, we have

|x(t)| ≤ ψ(‖x‖)
Γ(q)

 1∫
0

(1− s)q−1p(s)ds+
Γ(p+ 2)

|Γ(p+ 2)− αηp+1|

1∫
0

(1− s)q−1p(s)ds +

+
αp(p+ 1)

|Γ(p+ 2)− αηp+1|

η∫
0

s∫
0

(η − s)p−1(s− r)q−1p(r)drds

+ 2[|x0|+ Lg‖x‖].

If condition (ii) of Theorem 4.4 holds, then there exists λ ∈ (0, 1) and x ∈ ∂Br
with x = λN (x). Then, x is a solution of (2.7) with ‖x‖ = M. Now, the previous
inequality implies

(1− 2Lg)M

Λψ(M) + 2|x0|
≤ 1,

which contradicts (4.2). Hence, N has a fixed point in [0, 1] by Theorem 4.4, and
consequently the boundary value problem (1.2) has a solution. This completes the
proof.

4.2. THE LOWER SEMI-CONTINUOUS CASE

As a next result, we study the case when F is not necessarily convex valued. Our strat-
egy to deal with this problems is based on the nonlinear alternative of Leray-Schauder
type together with the selection theorem of Bressan and Colombo [17] for lower
semi-continuous maps with decomposable values.

Let us mention some auxiliary facts. Let X be a nonempty closed subset of a
Banach space E and G : X → P(E) be a multivalued operator with nonempty closed
values. G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ B 6= ∅} is open
for any open set B in E. Let A be a subset of [0, 1] × R. A is L ⊗ B measurable
if A belongs to the σ−algebra generated by all sets of the form J × D, where J
is Lebesgue measurable in [0, 1] and D is Borel measurable in R. A subset A of
L1([0, 1],R) is decomposable if for all u, v ∈ A and measurable J ⊂ [0, 1] = J , the
function uχJ + vχJ−J ∈ A, where χJ stands for the characteristic function of J .

Definition 4.6. Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))
be a multivalued operator. We sayN has a property (BC) ifN is lower semi-continuous
(l.s.c.) and has nonempty closed and decomposable values.
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Let F : [0, 1]× R → P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0, 1] × R) → P(L1([0, 1],R)) associated with
F as

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F (t, x(t)) for a.e. t ∈ [0, 1]},

which is called the Nemytskii operator associated with F.

Definition 4.7. Let F : [0, 1]×R→ P(R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its asso-
ciated Nemytskii operator F is lower semi-continuous and has nonempty closed and
decomposable values.

Lemma 4.8 ([22]). Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))
be a multivalued operator satisfying the property (BC ). Then N has a continuous se-
lection, that is, there exists a continuous function (single-valued) g : Y → L1([0, 1],R)
such that g(x) ∈ N(x) for every x ∈ Y .

Theorem 4.9. Assume that (H2), (H3), (H4) and the following conditions hold:

(H5) F : [0, 1]×R→ P(R) is a nonempty compact-valued multivalued map such that:
(a) (t, x) 7−→ F (t, x) is L ⊗ B measurable,
(b) x 7−→ F (t, x) is lower semicontinuous for each t ∈ [0, 1].

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof. It follows from (H2) and (H5) that F is of l.s.c. type. Then from Lemma 4.8,
there exists a continuous function f : C([0, 1],R) → L1([0, 1],R) such that f(x) ∈
F(x) for all x ∈ C([0, 1],R).

Consider the problem{
cDqx(t) = f(x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = x0 + g(x), x(1) = αIpx(η), 0 < η < 1.
(4.5)

Observe that if x ∈ AC1([0, 1]) is a solution of (4.5), then x is a solution to
the problem (1.1). Now, we define two operators as follows: A′ : C([0, 1], E) −→
C([0, 1],R) by

A′x(t) = (1− t)(x0 + g(x)), (4.6)

and the multi-valued operator B′ : C([0, 1], E) −→ P(C([0, 1],R)) by

B′x(t) =
1

Γ(q)

t∫
0

(t− s)q−1f(x(s))ds−

− Γ(p+ 2)t

Γ(q)[Γ(p+ 2)− αηp+1]

1∫
0

(1− s)q−1f(x(s))ds+

+
αp(p+ 1)t

Γ(q)[Γ(p+ 2)− αηp+1]

η∫
0

s∫
0

(η − s)p−1(s− r)q−1f(x(r))drds.

(4.7)
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Now A′,B′ : C([0, 1],R) → C([0, 1],R) are continuous. Also the argument in
Theorem 4.5 guarantees that A′ and B′ satisfy all the conditions of the Nonlinear
Alternative for contractive maps in the single valued setting [23] and hence the
problem (4.5) has a solution.
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