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Abstract. In this note, we derive the lower bound on the sum for Wiener index of bipartite
graph and its bipartite complement, as well as the lower and upper bounds on this sum for
the Randić index and Zagreb indices. We also discuss the quality of these bounds.
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1. INTRODUCTION

Throughout this note, we consider simple graphs (not necessarily connected). Given
a graph G = (V,E) and its vertices u, v ∈ V , the distance d(u, v) is the length of the
shortest path between u and v; if u and v belong to different components of G, then
we set d(u, v) = +∞. The Wiener index W (G) of G is the sum of distances of all
unordered pairs of vertices of G. This graph invariant has found numerous applica-
tions in mathematical chemistry in connection with modeling the physical properties
of compounds using the structural description of their molecules (see, for example,
the survey papers [1] and [2]). Besides the chemical connections, the mathematical
properties of the Wiener index are also studied as well. In the paper [3], it was proved
that, for an n-vertex graph G and its complement G, W (G)+W (G) ≥ 3

2n(n− 1) this
bound is sharp for n ≥ 5. This result suggests a prove, for the Wiener index, a theorem
of Nordhaus-Gaddum type (that is, the best lower and upper bounds for the sum or
the product of values of a particular graph invariant for a graph and its complement);

indeed, the upper bound W (G) + W (G) ≤ n3+3n2+2n−6
6 was proved in [7]. The re-

sults of Nordhaus-Gaddum type were proved for many graph invariants (among them
vertex and edge chromatic number, domination and independence number) including
chemical indices (see papers [6, 7]).
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Our aim is to derive analogical results for the sum of selected chemical indices for
bipartite graph and its bipartite complement. Recall that the bipartite complement of
the bipartite graph G = (X,Y ;E) with respect to bipartitions X,Y is the bipartite

graph G̃ = (X,Y ; Ẽ) with the same bipartitions such that, for each x ∈ X and y ∈ Y ,

xy ∈ Ẽ if and only if xy 6∈ E. Besides Wiener index, in this paper, we will consider also
Zagreb indices M1(G) =

∑
v∈V (G) deg

2(v) and M2(G) =
∑

uv∈E(G) deg(u) · deg(v),
and the Randić index R(G) =

∑
uv∈E(G)

1√
deg(u) deg(v)

. The next section contains

Nordhaus-Gaddum type results for sums based on these indices with respect to bi-
partite complementation and a discussion on the quality of obtained bounds.

2. RESULTS

Theorem 2.1. Let G = (X,Y ;E) be bipartite graph on n vertices. Then

W (G) +W (G̃) ≥ 2n(n− 1).

Proof. Let |X | = p, |Y | = q and let d̃(u, v) be the distance of u and v in G̃. Then

W (G) =
∑

x∈X,y∈Y

d(u, v) +
∑

x,x′∈X

d(x, x′) +
∑

y,y′∈Y

d(y, y′),

W (G̃) =
∑

x∈X,y∈Y

d̃(u, v) +
∑

x,x′∈X

d̃(x, x′) +
∑

y,y′∈Y

d̃(y, y′).

Let x ∈ X, y ∈ Y be two vertices from different bipartitions of G. If xy ∈ E,
then d(x, y) = 1 and xy 6∈ Ẽ, which implies (using the fact that G̃ is also bipartite)

d̃(x, y) ≥ 3. Similarly, if xy 6∈ E, then d(x, y) ≥ 3 and d̃(x, y) = 1. We conclude that
each pair of vertices from different bipartitions of G contributes at least 4 to the sum
W (G) +W (G̃), thus, the total contribution of such pairs is at least 4pq.

Now, let x, x′ ∈ X (the case when both vertices are from Y is symmetrical).

Then d(x, x′) ≥ 2, d̃(x, x′) ≥ 2; thus, any two vertices from the same bipartition of G

contribute at least 4 to W (G) +W (G̃), which yields a total contribution of at least
4
(
p

2

)
(and 4

(
q

2

)
regarding the bipartition Y ).

Hence,

W (G) +W (G̃) ≥ 4pq + 4

(
p

2

)
+ 4

(
q

2

)
= 2(p+ q)(p+ q − 1) = 2n(n− 1).

To discuss the sharpness of this bound, consider a finite projective plane F of
order k, and let Gk be its incidence graph. It follows that Gk is a balanced bipartite,
has 2(k2 + k+ 1) vertices, is (k+ 1)-regular and has diameter 3. Let x, y be from the

same bipartition of Gk (there are
(
k2+k+1

2

)
such pairs). Then d(x, y) = 2 (because, in

F , every two distinct points are incident with a line, and vice versa). Suppose that
x, y are from different bipartitions of Gk. Then, for fixed x, there are k+ 1 vertices y



Notes on topological indices of graph and its complement 109

with d(x, y) = 1, and k2 vertices y′ with d(x, y′) = 3. Calculating the Wiener index
of Gk, we obtain

W (Gk) = 2 · 2 ·
(
k2 + k + 1

2

)
+ 1 · (k2 + k + 1)(k + 1) + 3 · (k2 + k + 1)k2 =

= (k2 + k + 1)(5k2 + 3k + 1).

Now, the graph G̃k is again a balanced bipartite with 2(k2 + k + 1) vertices, is

k2-regular and has diameter 3. Again, d̃(x, y) = 2 for x, y from the same bipartition

of Gk, d̃(x, y) = 3 for x, y from different bipartitions (for fixed x, there are k+1 such

pairs) and otherwise d̃(x, y) = 1 (with k2 pairs for fixed x). Hence,

W (G̃k) = 2 · 2 ·
(
k2 + k + 1

2

)
+ 1 · (k2 + k + 1)k2 + 3 · (k2 + k + 1)(k + 1) =

= (k2 + k + 1)(3k2 + 5k + 3).

Thus W (Gk)+W (G̃k) = 4(k2+k+1)(2k2+2k+1) = 2n(n−1) for n = k2+k+1.
This implies that the lower bound in Theorem 2.1 is attained for all n = 2(k2+k+1),
where k is a prime power.

On the other hand, there are values of n for which this lower bound is not attained.
For example, there are 17 connected bipartite graphs on 6 vertices, and 44 connected
bipartite graphs on 7 vertices (see [4]), but no 6-vertex connected bipartite graph has a
connected bipartite complement, and there are only two 7-vertex connected bipartite
graphs with connected components: the path P7 and the 3-star T ∗ with branches of
length 1, 2 and 3 (the graph B34 in [4, p. 192]). For these graphs, P̃7

∼= P7, T̃ ∗ ∼= T ∗

and W (P7) +W (P̃7) = 2 · 56 = 112 > 2 · 7 · (7− 1), W (T ∗) +W (T̃ ∗) = 2 · 50 = 100 >

2 · 7 · (7− 1).
Next, of 182 connected bipartite graphs on 8 vertices, 28 have connected bipar-

tite complement; using the database of bipartite graphs (see [5]) and the Maple 14

software, we found out that the minimum value of W (G) +W (G̃) equals 120 (being
greater that 2 · 8 · 7 = 112) for G being the graph obtained from the graph of a
3-cube by deleting edges of any 4-cycle. Similarly, when considering 9-vertex bipartite
graphs, the minimum value 152 (being greater that 2 · 9 · 8 = 144) results from only
one graph which is obtained from the graph K2,3 by attaching four vertices of degree
1 to vertices of any 4-cycle. For 10-vertex bipartite graphs, the minimum value is 188
(which is greater that 2 · 10 · 9 = 180) and is obtained for five graphs, see Figure 1.
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Fig. 1. 10-vertex connected bipartite graphs with minimal W (G) +W (G̃)

For 11-vertex bipartite graphs, the minimum value is 226 (which is greater that
2 · 11 · 10 = 220) and is obtained for two complementary graphs, see Figure 2.

Fig. 2. 11-vertex connected bipartite graphs with minimal W (G) +W (G̃)

Herbert Vojčík (private communication) has performed the computer search on
12- and 13-vertex bipartite graphs and found many graphs attaining the equality in
Theorem 2.1. It is an open question whether the equality in Theorem 2.1 can be
attained for any n ≥ 12.

In general, one might consider the notion of a non-standard complement also
for non-bipartite graphs, in the following way: given a graph G = (V1, . . . , Vk;E)
with distinguished partition X = (V1, . . . , Vk) of its vertex set into k classes, its

complement with respect to X is the graph G̃X with the same vertex set under the
same partition such that, for each x ∈ Vi and y ∈ Vj with i 6= j, xy ∈ E(G̃X )
if and only if xy 6∈ E. However, in order to have such a complement independent
of vertex set partitions, the partition X should be uniquely induced in a “generic
way” by certain natural and reasonable graph characteristics. The standard graph
complement of an n-vertex graph corresponds to the “most granular” partition X =
({v1}, {v2}, . . . , {vn}). Another way how to obtain a uniquely defined complement
is to consider the family of uniquely k-colourable graphs (that is, the graphs such
that each of their k-colouring induces the same vertex partition); this generalizes
the bipartite complement (as the family of uniquely colourable graphs also includes
connected bipartite graphs).
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For these graphs, we can prove the following analogue of Theorem 2.1.

Theorem 2.2. Let G be a uniquely k-colourable graph on n vertices with X being the
partition of V (G) into k colour classes, and let p, q be nonnegative integers such that

n = pk + q, 0 ≤ p ≤ k − 1. Then W (G) +W (G̃X ) ≥ 3
(
n
2

)
+ (k − q)

(
p
2

)
+ q
(
p+1
2

)
.

Proof. Let ni, n = 1, . . . , k be the number of vertices in the i-th colour class of
G. Consider a pair x, y of vertices of G. If x, y are from the same colour class,
then dG(x, y) ≥ 2, d

G̃X

(x, y) ≥ 2; thus, the total contribution of such pairs to

W (G) + W (G̃X ) is at least 4
k∑

i=1

(
ni

2

)
. If x, y are from different colour classes, then

their contribution is at least 3 (since x, y are nonadjacent in G or G̃X ). Thus

W (G) +W (G̃X ) ≥ 4

k∑

i=1

(
ni

2

)
+ 3

((
n

2

)
−

k∑

i=1

(
ni

2

))
= 3

(
n

2

)
+

k∑

i=1

(
ni

2

)
.

With
∑k

i=1 ni = n, it can be easily checked that the minimum of
∑k

i=1

(
ni

2

)
is

attained when any two numbers of n1, . . . , nk differ by at most one; this means that,
of k variables n1, . . . , nk, q are equal to p+1 and k−q are equal to p. Thus

∑k

i=1

(
ni

2

)
≥

(k − q)
(
p

2

)
+ q
(
p+1
2

)
.

In the next, we turn our attention to Zagreb indices for bipartite graph and its
bipartite complement.

Theorem 2.3. Let G = (P,Q;E) be a bipartite graph with |P | = p, |Q| = q and let

G̃ = (P,Q; Ẽ) be its bipartite complement. Then

pq(p+ q)

2
≤ M1(G) +M1(G̃) ≤ pq(p+ q).

Proof. For the sum of the first Zagreb indices of G and G̃, we have

M1(G) +M1(G̃) =
∑

u∈P∪Q

deg2G(u) +
∑

u∈P∪Q

deg2
G̃
(u) =

∑

u∈P

deg2G(u) +
∑

u∈Q

deg2G(u)+

+
∑

u∈P

deg2
G̃
(u)+

∑

u∈Q

deg2
G̃
(u) =

∑

u∈P

(deg2G(u) + deg2
G̃
(u))+

∑

u∈Q

(deg2G(u) + deg2
G̃
(u)).

By Jensen’s inequality (applied on the convex function f(x) = x2) we have

deg2G(u) + deg2
G̃
(u) ≥ (degG(u)+deg

G̃
(u))2

2 ; thus, we obtain

M1(G) +M1(G̃) ≥
∑

u∈P

(degG(u) + deg
G̃
(u))2

2
+
∑

u∈Q

(degG(u) + deg
G̃
(u))2

2
=

=
∑

u∈P

q2

2
+
∑

u∈Q

p2

2
=

pq2

2
+

qp2

2
=

pq(p+ q)

2
.
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To prove the upper bound, we use the fact that deg2G(u) + deg2
G̃
(u) ≤ (degG(u) +

deg
G̃
(u))2. Therefore,

M1(G) +M1(G̃) ≤
∑

u∈P

(degG(u) + deg
G̃
(u))2 +

∑

u∈Q

(degG(u) + deg
G̃
(u))2 =

=
∑

u∈P

q2 +
∑

u∈Q

p2 = pq2 + qp2 = pq(p+ q).

Note that, in the above theorem, both bounds are best possible. The lower bound
is attained for a bipartite graph G = (P,Q;E) such that, for any vertex u ∈ P ,
deg(u) = q

2 and for u ∈ Q, deg(u) = p

2 . The equality in the upper bound holds for
a complete bipartite graph Kp,q.

Theorem 2.4. Let G = (P,Q;E) be a bipartite graph with |P | = p, |Q| = q and let

G̃ = (P,Q; Ẽ) be its bipartite complement. Then

(pq
2

)2
≤ M2(G) +M2(G̃) ≤ (pq)2.

Proof. Recall that

M2(G) +M2(G̃) =
∑

uv∈E(G)

degG(u) · degG(v) +
∑

uv∈E(G̃)

deg
G̃
(u) · deg

G̃
(v)

and that G and G̃ together have pq edges. For an upper bound, we have

M2(G) +M2(G̃) ≤
∑

uv∈E(G)

qp+
∑

uv∈E(G̃)

qp = pq(|E(G)|+ |E(G̃)|) = (pq)2.

To show the lower bound, we will use the approach and Lemma 2.1 from [7]: for
the function f : [0, a] → R defined by f(x) = xx(a − x)(a−x) for x ∈ (0, a) with
f(0) = f(a) = aa, it holds f(x) ≥

(
a
2

)a
for each x ∈ [0, a].

By the arithmetic-geometric mean inequality, we have

M2(G) +M2(G̃)

pq
≥ pq

√√√√
(

∏

uv∈E(G)

degG(u) · degG(v)
)(

∏

uv∈E(G̃)

deg
G̃
(u) · deg

G̃
(v)

)
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thus,

M2(G) +M2(G̃) ≥

≥ pq pq

√√√√
(

∏

uv∈E(G)

degG(u) · degG(v)
)(

∏

uv∈E(G̃)

deg
G̃
(u) · deg

G̃
(v)

)
=

= pq pq

√√√√√




∏

x∈V (G)

degG(x)
degG(x)






∏

x∈V (G̃)

deg
G̃
(x)degG̃(x)


 =

= pq pq

√∏

x∈P

degG(x)
degG(x)

∏

x∈Q

degG(x)
degG(x)

∏

x∈P

deg
G̃
(x)degG̃(x)

∏

x∈Q

deg
G̃
(x)degG̃(x) =

= pq pq

√∏

x∈P

degG(x)
degG(x)(q−degG(x))

q−degG(x)
∏

x∈Q

degG(x)
degG(x)(p−degG(x))

p−degG(x)=

= pq pq

√∏

x∈P

degG(x)
degG(x)(q − degG(x))

q−degG(x)×

× pq

√∏

x∈Q

degG(x)
degG(x)(p− degG(x))

p−degG(x) ≥

≥ pq pq

√∏

x∈P

(
q

2

)q
pq

√∏

x∈Q

(
p

2

)p
= pq · q

2
· p
2
=
(
pq

2

)2
.

Note that both bounds are best possible and they are attained for the same graphs
as in Theorem 2.4.

Theorem 2.5. Let G = (P,Q;E) be a bipartite graph with |P | = p, |Q| = q, |E| = m

and let G̃ = (P,Q; Ẽ) be its bipartite complement. Then

√
pq ≤ R(G) +R(G̃) ≤ (

√
p+

√
q)

(√
m+

√
pq −m

2

)
.

Proof. For any edge uv ∈ E(G), degG(u) ·degG(v) ≤ pq, thus 1√
degG(u)·degG(v)

≥ 1√
pq

;

the same lower bound holds also for any edge uv ∈ E(G̃). Hence,

R(G) +R(G̃) ≥
∑

uv∈E(G)

1√
pq

+
∑

uv∈E(G̃)

1√
pq

= pq · 1√
pq

=
√
pq.

On the other hand, to prove the upper bound we use the relation of arithmetic mean

and root mean square. Denote by N(u) and Ñ(u) the set of the neighbours of a vertex
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u in G and in G̃, respectively. We have

R(G) +R(G̃) =
∑

uv∈E(G)

1√
degG(u) degG(v)

+
∑

uv∈E(G̃)

1√
deg

G̃
(u) deg

G̃
(v)

=

=
1

2

∑

u∈V (G)

(
∑

v∈N(u)

1√
degG(u) degG(v)

)
+
1

2

∑

u∈V (G)

(
∑

v∈Ñ(u)

1√
deg

G̃
(u) deg

G̃
(v)

)
=

=
1

2

∑

u∈V (G)

(
1√

degG(u)

∑

v∈N(u)

1√
degG(v)

)
+
1

2

∑

u∈V (G)

(
1√

deg
G̃
(u)

∑

v∈Ñ(u)

1√
deg

G̃
(v)

)
=

=
1

2

∑

u∈P



 1√
degG(u)

∑

v∈N(u)

1√
degG(v)



+
1

2

∑

u∈Q

(
1√

degG(u)

∑

v∈N(u)

1√
degG(v)

)
+

+
1

2

∑

u∈P



 1√
deg

G̃
(u)

∑

v∈Ñ(u)

1√
deg

G̃
(v)



+
1

2

∑

u∈Q



 1√
deg

G̃
(u)

∑

v∈Ñ(u)

1√
deg

G̃
(v)



 ≤

≤ 1

2

∑

u∈P

1√
degG(u)

degG(u) +
1

2

∑

u∈Q

1√
degG(u)

degG(u)+

+
1

2

∑

u∈P

1√
q − degG(u)

(q − degG(u)) +
1

2

∑

u∈Q

1√
p− degG(u)

(p− degG(u)) =

=
1

2

∑

u∈P

√
degG(u) +

1

2

∑

u∈Q

√
degG(u) +

1

2

∑

u∈P

√
q − degG(u) +

1

2

∑

u∈Q

√
p− degG(u) ≤

≤ p

2

√√√√
∑
u∈P

degG(u)

p
+

q

2

√√√√
∑
u∈Q

degG(u)

q
+

+
p

2

√√√√
∑
u∈P

(q − degG(u))

p
+

q

2

√√√√
∑
u∈Q

(p− degG(u))

q
=

=

√
p

2

√
m+

√
q

2

√
m+

√
p

2

√
pq −m+

√
q

2

√
pq −m = (

√
p+

√
q)

(√
m+

√
pq −m

2

)
.

Note that the lower bound is attained for complete bipartite graphs. However,
we do not know an example of a bipartite graph attaining the upper bound, and we
conjecture that the best upper bound is 2

√
pq.

In general, one might consider also the Nordhaus-Gaddum type inequality (in
the case of a bipartite graph/bipartite complement) for a generalized Randić index
Rα(G) =

∑
uv∈E(G)(degG(u) degG(v))

α and to obtain results analogical to the ones

in [7]; however, the upper bound in Theorem 2.3 of [7] seems to be incorrect – for
example, putting α = −1 and G ∼= K2,2, one has R(G) = 4 · 1√

2·2 = 1 and R(G) =

R(2K2) = 2 · 1√
1·1 = 2, thus R(G) + R(G) = 3 whereas the upper bound for this

sum is
(
4
2

) (
4−1
2

)2·(−1)
= 6 ·

(
3
2

)−2
= 8

3 < 3. Thus, for general α, the problem of best
bounds remains open both for classical and bipartite complement version.
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