THE MAXIMUM PRINCIPLE FOR VISCOSITY SOLUTIONS OF ELLIPTIC DIFFERENTIAL FUNCTIONAL EQUATIONS

Adrian Karpowicz

Communicated by Vicentiu D. Radulescu

Abstract. This paper is devoted to the study of the maximum principle for the elliptic equation with a deviated argument. We will consider viscosity solutions of this equation.

Keywords: maximum principle, viscosity solution, elliptic equations.

Mathematics Subject Classification: 35J15, 35J60, 35R10.

1. INTRODUCTION

Let Ω be an open subset of \mathbb{R}^n . We denote by $C(\Omega)$ the space of continuous functions from Ω into \mathbb{R} with the usual supremum norm. $USC(\Omega)$ is the space of upper semicontinuous functions $u: \Omega \to \mathbb{R}$ and $LSC(\Omega)$ is the space of lower semicontinuous functions $u: \Omega \to \mathbb{R}$. Moreover $C_0(\Omega) = \{u \in C(\Omega): u = 0 \text{ on } \partial\Omega\}$. The continuous function $\alpha: \Omega \to \mathbb{R}^n$ is given. We define $I_\Omega: C_0(\Omega) \to C(\mathbb{R}^n), R: C(\mathbb{R}^n) \to C(\mathbb{R}^n),$ $P_\Omega: C(\mathbb{R}^n) \to C(\Omega) \text{ and } R_\Omega: C_0(\Omega) \to C(\Omega)$ by

$$(I_{\Omega}u)(x) = \begin{cases} u(x) & \text{for } x \in \Omega, \\ 0 & \text{for } x \notin \Omega, \end{cases}$$
$$Ru(x) = u(\alpha(x)), \quad P_{\Omega}u = u_{|\Omega}, \quad R_{\Omega} = P_{\Omega}RI_{\Omega}.$$

We shall discuss the Maximum Principle for viscosity solutions of the following functional differential elliptic problem:

$$\begin{cases} F\left(x, u(x), R_{\Omega}u(x), Du(x), D^{2}u(x)\right) = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \mathbb{R}^{n} \backslash \Omega, \end{cases}$$
(1.1)

© AGH University of Science and Technology Press, Krakow 2013

99

where $F: \Omega \times \mathbb{R} \times C(\Omega) \times \mathbb{R}^n \times S(n) \to \mathbb{R}$ is a given function. Here S(n) is the set of symmetric $n \times n$ matrices. In order to define the viscosity solutions we need some definitions and assumptions.

Assumption 1.1. Suppose that the function $F : \Omega \times \mathbb{R} \times C(\Omega) \times \mathbb{R}^n \times S(n) \to \mathbb{R}$ of the variables (x, r, q, p, X) is nondecreasing in r and nonincreasing in X.

In order to define the viscosity solutions we need some definitions.

Definition 1.2. If $u : \Omega \to \mathbb{R}$, $\hat{x} \in \Omega$ and

$$u(x) \le u(\hat{x}) + \langle p, x - \hat{x} \rangle + \frac{1}{2} \langle X(x - \hat{x}), x - \hat{x} \rangle + o(|x - \hat{x}|)$$

as $\Omega \ni x \to \hat{x}$, then we say that $(p, X) \in J_{\Omega}^{2,+}u(\hat{x})$.

Definition 1.3. If $u: \Omega \to \mathbb{R}$, $\hat{x} \in \Omega$, then we define the sets $J_{\Omega}^{2,-}u(\hat{x})$, $\bar{J}_{\Omega}^{2,+}u(x)$ and $\bar{J}_{\Omega}^{2,-}u(x)$ by

$$\begin{split} J_{\Omega}^{2,-}u(\hat{x}) &= -J_{\Omega}^{2,+}(-u(\hat{x})), \\ \bar{J}_{\Omega}^{2,+}u(x) &= \Big\{ (p,X) \in \mathbb{R}^n \times \mathcal{S}(n) : \exists (x_n,p_n,X_n) \in \Omega \times \mathbb{R}^n \times \mathcal{S}(n) \\ &(p_n,X_n) \in J_{\Omega}^{2,+}u(x_n) \text{ and } (x_n,u(x_n),p_n,X_n) \to (x,u(x),p,X) \Big\}, \\ \bar{J}_{\Omega}^{2,-}u(x) &= \Big\{ (p,X) \in \mathbb{R}^n \times \mathcal{S}(n) : \exists (x_n,p_n,X_n) \in \Omega \times \mathbb{R}^n \times \mathcal{S}(n) \\ &(p_n,X_n) \in J_{\Omega}^{2,-}u(x_n) \text{ and } (x_n,u(x_n),p_n,X_n) \to (x,u(x),p,X) \Big\}. \end{split}$$

 $J_{\Omega}^{2,+}u(\hat{x})$ depends on Ω , but it is the same for all sets Ω , for which \hat{x} is an interior point. Let $J^{2,+}u(\hat{x})$ denote this common value. Now, we can defined the viscosity solutions.

Definition 1.4. Let F satisfy Assumption 1.1 and $\Omega \subset \mathbb{R}^n$. A viscosity subsolution of F = 0 (equivalently, a viscosity solution of $F \leq 0$) on Ω is a function $u \in C(\Omega)$ such that

$$F(x, u(x), R_{\Omega}u(x), p, X) \leq 0$$
 for all $x \in \Omega$ and $(p, X) \in J_{\Omega}^{2,+}u(x)$.

Similarly, a viscosity supersolution of F = 0 on Ω is a function $u \in C(\Omega)$ such that

 $F(x, u(x), R_{\Omega}u(x), p, X) \ge 0$ for all $x \in \Omega$ and $(p, X) \in J_{\Omega}^{2,-}u(x)$.

Finally, u is a viscosity solution of F = 0 in Ω if it is both a viscosity subsolution and a viscosity supersolution of F = 0 in Ω .

The Maxima Principles for non-functional differential elliptic equations can be found in [2–4]. Existence of solutions for linear differential-functional equations of elliptic type have been studied in [1]. Paper [5] is devoted to viscosity solutions for first order partial differential-functional equations. In [2] we can find the following lemma and theorem. **Lemma 1.5.** Let Θ be a subset of \mathbb{R}^n , $u \in USC(\Theta)$, $v \in LSC(\Theta)$ and

$$M_{\gamma} = \sup_{(x,y)\in\Theta\times\Theta} \left(u(x) - v(y) - \frac{\gamma}{2}|x-y|^2 \right)$$
(1.2)

for $\gamma > 0$. Let $M_{\gamma} < \infty$ for large γ and (x_{γ}, y_{γ}) be such that

$$\lim_{\gamma \to \infty} \left(M_{\gamma} - \left(u(x_{\gamma}) - v(y_{\gamma}) - \frac{\gamma}{2} |x_{\gamma} - y_{\gamma}|^2 \right) \right) = 0.$$
 (1.3)

Then the following conditions holds:

$$\lim_{\gamma \to \infty} \gamma |x_{\gamma} - y_{\gamma}|^2 = 0 \quad and \tag{1.4}$$

$$\lim_{\gamma \to \infty} M_{\gamma} = u(\hat{x}) - v(\hat{x}) = \sup_{x \in \Theta} \left(u(x) - v(x) \right), \tag{1.5}$$

whenever $\hat{x} \in \Theta$ is a limit point of x_{γ} as $\gamma \to \infty$.

Theorem 1.6. Let Θ_i be a locally compact subset of \mathbb{R}^{n_i} for i = 1, 2, ..., k, $\Theta = \Theta_1 \times ... \times \Theta_k$, $u_i \in USC(\Theta_i)$, and φ be twice continuously differentiable in a neighborhood of Θ . Set

$$w(x) = u_1(x_1) + \ldots + u_k(x_k) \text{ for } x = (x_1, \ldots, x_k) \in \Theta,$$

and suppose $\hat{x} = (\hat{x}_1, \dots, \hat{x}_k) \in \Theta$ is a local maximum of $w - \varphi$ relative to Θ . Then for each $\epsilon > 0$ there exists $X_i \in S(n_i)$ such that

$$(D_{x_i}\varphi(\hat{x}), X_i) \in \bar{J}_{\Theta_i}^{2,+} u_i(\hat{x}_i) \quad for \quad i = 1, 2, \dots, k,$$

and the block diagonal matrix with entries X_i satisfies

$$-\left(\frac{1}{\epsilon} + \|A\|\right)I \leq \begin{bmatrix} X_1 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & X_k \end{bmatrix} \leq A + \epsilon A^2,$$
(1.6)

where $A = D^2 \varphi(\hat{x}) \in S(n)$, $n = n_1 + \ldots + n_k$ and I denotes the unit matrix.

The above lemma and theorem will be used later.

2. THE MAXIMUM PRINCIPLE

Assumption 2.1. Suppose that the function $F : \Omega \times \mathbb{R} \times C(\Omega) \times \mathbb{R}^n \times S(n) \to \mathbb{R}$ of the variables (x, r, q, p, X) is continuous, nonincreasing in X and such that:

(a) there are constants L > K > 0 such that

$$F(x, r, q, p, X) - F(x, \tilde{r}, \tilde{q}, p, X) \ge L(r - \tilde{r}) - K(q - \tilde{q})$$

$$(2.1)$$

for $r \geq \tilde{r}$ and $q \geq \tilde{q}$,

(b) there is a function $\omega: [0,\infty] \to [0,\infty]$ that satisfies $\omega(0^+) = 0$ such that

$$F(y, r, q, \gamma(x - y), Y) - F(x, r, q, \gamma(x - y), X) \le \omega(\gamma |x - y|^2 + |x - y|), \quad (2.2)$$

whenever $x, y \in \Omega, r \in \mathbb{R}, q \in C(\Omega), X, Y \in S(n)$ and

$$-3\gamma \begin{bmatrix} I & 0\\ 0 & I \end{bmatrix} \leq \begin{bmatrix} X & 0\\ 0 & -Y \end{bmatrix} \leq 3\gamma \begin{bmatrix} I & -I\\ -I & I \end{bmatrix},$$

(c) there is constant M > 0 such that

$$|\alpha(x) - \alpha(y)| \le M|x - y|. \tag{2.3}$$

Remark 2.2. If the condition (a) holds, then the function F is nondecreasing in r and nonincreasing in q.

Theorem 2.3. Let Ω be a bounded open subset of \mathbb{R}^n , the function F satisfies Assumption 2.1. Let $u \in C(\overline{\Omega})$ (respectively, $v \in C(\overline{\Omega})$) be a subsolution (respectively, supersolution) of F = 0 in Ω and $u \leq v$ on $\partial\Omega$. Then $u \leq v$ in Ω .

Proof. Let

$$M_{\gamma} = \sup_{(x,y)\in\bar{\Omega}\times\bar{\Omega}} \left(u(x) - v(y) - \frac{\gamma}{2}|x-y|^2 \right).$$
(2.4)

 M_{γ} is finite since u - v is continuous and $\overline{\Omega}$ is compact. Suppose, contrary to our claim, that there is $z \in \Omega$ such that u(z) > v(z). From (2.4) we get that

$$M_{\gamma} \ge u(z) - v(z) \equiv \delta > 0 \quad \text{for } \gamma > 0.$$
(2.5)

Choose (x_{γ}, y_{γ}) such that $M_{\gamma} = u(x_{\gamma}) - v(y_{\gamma}) - \frac{\gamma}{2}|x_{\gamma} - y_{\gamma}|^2$. By Lemma 1.5, we know that $\lim_{\gamma \to \infty} x_{\gamma} = \lim_{\gamma \to \infty} y_{\gamma}$. Let $g = \lim_{\gamma \to \infty} x_{\gamma} = \lim_{\gamma \to \infty} y_{\gamma}$. We show that $(x_{\gamma}, y_{\gamma}) \in \Omega \times \Omega$ for large γ . On the contrary, suppose that $(x_{\gamma}, y_{\gamma}) \notin \Omega \times \Omega$ for large γ . Then $g \in \partial \Omega$. From the fact, that $u \leq v$ on $\partial \Omega$ and Lemma 1.5 we get $\lim_{\gamma \to \infty} M_{\gamma} \leq 0$. This contradicts (2.5).

Let k = 2, $\Omega_1 = \Omega_2 = \Omega$, $u_1 = u$, $u_2 = -v$ and $\varphi(x, y) = \frac{\gamma}{2}|x-y|^2$ in Theorem 1.6. Note that

$$\bar{J}^{2,-}v = -\bar{J}^{2,+}(-v), \quad D_x\varphi(\hat{x},\hat{y}) = -D_y\varphi(\hat{x},\hat{y}) = \gamma(\hat{x}-\hat{y}),$$
$$A = D^2\varphi(\hat{x},\hat{y}) = \gamma \begin{bmatrix} I & -I \\ -I & I \end{bmatrix}, \quad A^2 = 2\gamma A \quad \text{and} \quad \|A\| = 2\gamma.$$

And now from Theorem 1.6 we get that for every $\epsilon > 0$ there exists $X, Y \in \mathcal{S}(n)$ such that

$$(\gamma(\hat{x} - \hat{y}), X) \in \bar{J}^{2,+}u(\hat{x}), \quad (\gamma(\hat{x} - \hat{y}), Y) \in \bar{J}^{2,-}v(\hat{y}) \text{ and} -\left(\frac{1}{\epsilon} + 2\gamma\right) \begin{bmatrix} I & 0\\ 0 & I \end{bmatrix} \leq \begin{bmatrix} X & 0\\ 0 & -Y \end{bmatrix} \leq \gamma \left(1 + 2\epsilon\gamma\right) \begin{bmatrix} I & -I\\ -I & I \end{bmatrix}.$$

Choosing $\epsilon = \frac{1}{\gamma}$ yields

$$-3\gamma \left[\begin{array}{cc} I & 0 \\ 0 & I \end{array} \right] \leq \left[\begin{array}{cc} X & 0 \\ 0 & -Y \end{array} \right] \leq 3\gamma \left[\begin{array}{cc} I & -I \\ -I & I \end{array} \right].$$

Let (\hat{x}, \hat{y}) denote (x_{γ}, y_{γ}) . From the definition of the subsolution and supersolution we get

$$F(\hat{x}, u(\hat{x}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), X) \le 0 \le F(\hat{y}, v(\hat{y}), R_{\Omega}v(\hat{y}), \gamma(\hat{x} - \hat{y}), Y).$$
(2.6)

From Lemma 1.5 and (2.5)

$$0 < \delta \le M_{\gamma} = u(\hat{x}) - v(\hat{y}) - \frac{\gamma}{2} |\hat{x} - \hat{y}|^2,$$

$$\gamma |\hat{x} - \hat{y}|^2 \to 0 \quad \text{as} \quad \gamma \to \infty.$$

By the above, we see that $u(\hat{x}) > v(\hat{y})$. And now, we note that

$$L\delta \leq LM_{\gamma} \leq L[u(\hat{x}) - v(\hat{y})] \leq$$

$$\leq F(\hat{x}, u(\hat{x}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), X) - F(\hat{x}, v(\hat{y}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), X) =$$

$$= [F(\hat{x}, u(\hat{x}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), X) - F(\hat{y}, v(\hat{y}), R_{\Omega}v(\hat{y}), \gamma(\hat{x} - \hat{y}), Y)] +$$

$$+ [F(\hat{y}, v(\hat{y}), R_{\Omega}v(\hat{y}), \gamma(\hat{x} - \hat{y}), Y) - F(\hat{y}, v(\hat{y}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), Y)] +$$

$$+ [F(\hat{y}, v(\hat{y}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), Y) - F(\hat{x}, v(\hat{y}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), X)].$$
(2.7)

From (2.6) we get

$$F(\hat{x}, u(\hat{x}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), X) - F(\hat{y}, v(\hat{y}), R_{\Omega}v(\hat{y}), \gamma(\hat{x} - \hat{y}), Y) \le 0.$$
(2.8)

From definitions of M_{γ} and (\hat{x}, \hat{y}) we get

$$u(\hat{x}) - v(\hat{y}) - \frac{\gamma}{2} |\hat{x} - \hat{y}|^2 = M_{\gamma} \ge u(\alpha(\hat{x})) - v(\alpha(\hat{y})) - \frac{\gamma}{2} |\alpha(\hat{x}) - \alpha(\hat{y})|^2.$$

We thus obtain

$$u(\alpha(\hat{x})) - v(\alpha(\hat{y})) \le u(\hat{x}) - v(\hat{y}) - \frac{\gamma}{2}|\hat{x} - \hat{y}|^2 + \frac{\gamma}{2}|\alpha(\hat{x}) - \alpha(\hat{y})|^2.$$

If $v(\alpha(\hat{y})) \leq u(\alpha((\hat{x})))$, then by the above and (2.1), (2.3), we get

$$F(\hat{y}, v(\hat{y}), R_{\Omega}v(\hat{y}), \gamma(\hat{x} - \hat{y}), Y) - F(\hat{y}, v(\hat{y}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), Y) \leq \\ \leq K[u(\alpha(\hat{x})) - v(\alpha(\hat{y}))] \leq K[u(\hat{x}) - v(\hat{y})] - \frac{K\gamma}{2} |\hat{x} - \hat{y}|^2 + \frac{K\gamma}{2} |\alpha(\hat{x}) - \alpha(\hat{y})|^2 \leq (2.9) \\ \leq K[u(\hat{x}) - v(\hat{y})] + \frac{K\gamma M}{2} |\hat{x} - \hat{y}|^2.$$

F is nonincreasing in q, so if $v(\alpha(\hat{y})) \ge u(\alpha(\hat{x}))$, then

$$F(\hat{y}, v(\hat{y}), R_{\Omega}v(\hat{y}), \gamma(\hat{x} - \hat{y}), Y) - F(\hat{y}, v(\hat{y}), R_{\Omega}u(\hat{x}), \gamma(\hat{x} - \hat{y}), Y) \le 0.$$
(2.10)

From (2.7)-(2.10) and (2.2), we get

$$L[u(\hat{x}) - v(\hat{y})] \le K[u(\hat{x}) - v(\hat{y})] + \frac{K\gamma M}{2} |\hat{x} - \hat{y}|^2 + \omega(\gamma |\hat{x} - \hat{y}|^2 + |\hat{x} - \hat{y}|).$$

By the above,

$$(L-K)[u(\hat{x}) - v(\hat{y})] \le \frac{K\gamma M}{2} |\hat{x} - \hat{y}|^2 + \omega(\gamma |\hat{x} - \hat{y}|^2 + |\hat{x} - \hat{y}|).$$
(2.11)

We know that L > K and

$$\frac{K\gamma M}{2}|\hat{x}-\hat{y}|^2 + \omega(\gamma|\hat{x}-\hat{y}|^2 + |\hat{x}-\hat{y}|) \to 0 \quad \text{as} \quad \gamma \to \infty.$$

Therefore, from (2.11) we get that $[u(\hat{x}) - v(\hat{y})] \to 0$ as $\gamma \to \infty$. We see from this and (2.7) that $L\delta \leq 0$. This contradicts the fact that there is $z \in \Omega$ such that u(z) > v(z). This finishes the proof.

Now, we give an example which demonstrates that if F is increasing in q, then the Theorem 2.3 is false.

Example 2.4. We define $\Omega = [-1, 1] \times [-1, 1], u(x, y) = e^{1-x^2-y^2}, v(x, y) = 2, 5$ and

$$(Lz)(x,y) = -\frac{1}{10}\frac{\partial^2 z}{\partial x^2}(x,y) - \frac{1}{10}\frac{\partial^2 z}{\partial y^2}(x,y) + u\left(\frac{x}{10} + \frac{9}{10}, \frac{y}{10} + \frac{9}{10}\right) - 2, 4.$$

We use the program wxMaxima and calculate (Lv)(x, y), (Lu)(x, y) for $(x, y) \in \Omega$. We get (Lv)(x, y) = 0, 1 for $(x, y) \in \Omega$, and the graph of $Lu : \Omega \to \mathbb{R}$ is showed on Figure 1. We see that (Lu)(x, y) < 0 for $(x, y) \in \Omega$, u(x, y) < 1 < v(x, y) on $\partial\Omega$ and u(0, 0) = e > 2, 5 = v(0, 0). Therefore, the assertion of Theorem 2.3 does not hold.

Fig. 1. Graph Lu on Ω

REFERENCES

- A. Augustynowicz, Existence of solutions to BVP for linear differential-functional equations of elliptic type, Circolo Mat. Palermo 47 (1998), 99–105.
- [2] M.G. Crandall, H. Ishii, P.L. Lions, User's quide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1, 1–67.
- [3] M.G. Crandall, H. Ishii, The maximum principle for semicontinuous functions, Differential Integral Equations 3 (1990), 1001–1014.
- [4] R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rat. Mech. Anal. 101 (1988), 1–27.
- [5] K. Topolski, On the uniqueness of viscosity solutions for first order partial differential-functional equations, Ann. Polon. Math. LIX (1994), 65–75.

Adrian Karpowicz akarpowi@math.univ.gda.pl

University of Gdańsk Institute of Mathematics Wit Stwosz St. 57, 80-952 Gdańsk, Poland

Received: March 14, 2012. Accepted: August 11, 2012.