Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that any μ ∈ C is an infinite multiplicity eigenvalue of the Steklov smoothing operator Sh acting on the space [formula]. For μ ≠ 0 the eigenvalue-eigenfunction problem leads to studying a differential-difference equation of mixed type. An existence and uniqueness theorem is proved for this equation. Further a transformation group is defined on a countably normed space of initial functions and the spectrum of the generator of this group is studied. Some possible generalizations are pointed out.
Czasopismo
Rocznik
Tom
Strony
81--98
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
autor
- Universidad Simon Bolivar, Departamento de Matematicas, Apartado Postal 89000 Caracas 1080-A, Venezuela, serguei@usb.ve, iakovlev@mail.ru
Bibliografia
- [1] I. Gohberg, S. Goldberg, N. Krupnik, Traces and Determinants of Linear Operators, Birkhauser Verlag, Germany, 2000.
- [2] R.D. Driver, Ordinary and Delay Differential Eąuations, Applied Mathematical Sciences 20, Springer-Verlag, 1977.
- [3] J. Hale, Theory of Functional Differential Eąuations, Applied Mathematical Sciences 3, Springer-Verlag, 1977.
- [4] R. Bellman, K.L. Cooke, Differential-Difference Eąuations, A series of Monographs and Textbooks, Academic Press, 1963.
- [5] J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, 1980.
- [6] I.M. Gelfand, G.E. Schilov, Generalized Functions, V.2, Academic Press, 1968.
- [7] K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Eąuations, Springer-Verlag, 2000.
- [8] S. Misohata, Theory of Eąuations with Partial Derivatives, Mir, Moscow, 1977.
- [9] K. Yosida, Functional Analysis, Springer-Verlag, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0009-0009