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THE LQ-CONTROLLER SYNTHESIS PROBLEM
FOR INFINITE–DIMENSIONAL SYSTEMS

IN FACTOR FORM
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Abstract. The general lq-problem with infinite time horizon for well-posed infinite-dimensio-
nal systems has been investigated by George Weiss and Martin Weiss and by Olof Staffans
with a complement by Kalle Mikkola and Olof Staffans.

Our aim in this paper is to present a solution of a general lq-optimal controller synthesis
problem for infinite-dimensional systems in factor form. The systems in factor form are an
alternative to additive models, used in the theory of well-posed systems, which rely on leading
the analysis exclusively within the basic state space. As a result of applying the simplified
analysis in terms of the factor systems and an another derivation technique, we obtain an
equivalent, however, astonishingly not the same formulae expressing the optimal controller
in the time-domain and the method of spectral factorization.

The results are illustrated by two examples of the construction of both the optimal control
and optimal controller for some standard lq-problems met in literature: a control problem for
a class of boundary controlled hyperbolic equations initiated by Chapelon and Xu, to which
we give full solution and an example of the synthesis of the optimal control/controller for
the standard lq-problem with infinite-time horizon met in the problem of improving a river
water quality by artificial aeration, proposed by Żołopa and the author.

Keywords: control of infinite-dimensional systems, semigroups, infinite-time lq-control
problem.

Mathematics Subject Classification: 49N10, 93B05, 93C25.

1. INTRODUCTION

Consider a control system governed by the model in factor form{
ẋ(t) = A [x(t) +Du(t)] ,

y(t) = Cx(t),
(1.1)
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where the state operator A generates an exponentially stable (EXS) semigroup
{S(t)}t≥0 on a Hilbert space H with scalar product 〈·, ·〉H, , i.e., there exit M ≥ 1
and α > 0 such that

‖S(t)x0‖H ≤Me−αt ‖x0‖H , ∀t ≥ 0, ∀x0 ∈ H. (1.2)

Since s 7→ (sI − A)−1x0 is the Laplace transform of t 7→ S(t)x0 then, by (1.2), the
half-plane {s ∈ C : Re s > −α} is contained in the resolvent set of A which, in
particular, implies that A is invertible with bounded and everywhere defined inverse,
A−1 ∈ L(H). Next, C : (D(C) ⊂ H) −→ Y, CA−1 ∈ L(H,Y), D ∈ L(U,H) with
R(D) ⊂ D(C), CD ∈ L(U,Y) and u ∈ L2(0,∞; U). Here Y and U are Hilbert spaces
with scalar products 〈·, ·〉Y and 〈·, ·〉U, respectively.

The lq-optimal control problem with infinite time horizon is to minimize the
quadratic integral performance index

J(x0, u) =

∞∫
0

[
y(t)
u(t)

]∗ [
Q N
N∗ R

] [
y(t)
u(t)

]
dt, (1.3)

where Q = Q∗ ∈ L(Y), N ∈ L(U,Y) and R = R∗ ∈ L(U), on trajectories of (1.1).
To solve this problem we shall assume that:

(A1) C is an admissible observation operator, i.e., R(Z) ⊂ D(LY), where

Z ∈ L(H,L2(0,∞; Y)), (Zx0) (t) := CA−1S(t)x0;

LYf = f ′, D(LY) = W1,2([0,∞); Y).

Since LY generates the semigroup of left-shifts on L2(0,∞; Y) then, by the
closed-graph theorem, the admissibility of C holds iff

Ψ = LYZ ∈ L(H,L2(0,∞; Y)),

and Ψ is called the system observability map.
(A2) D is an admissible factor control operator, i.e., R(W) ⊂ D(A), where

W ∈ L(L2(0,∞; U),H), Wf :=

∞∫
0

S(t)Df(t)dt.

By the closed-graph theorem, the admissibility of D holds iff

Φ = AW ∈ L(L2(0,∞; U),H),

and Φ is the system reachability map.
(A3) The system transfer function Ĝ(s) := sC(sI −A)−1D − CD = s2

(
CA−1

)
(sI −

A)−1D −s
(
CA−1

)
D − CD (thus Ĝ is well-defined for Re s > −α) satisfies

Ĝ ∈ H∞(C+,L(U,Y))
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(recall that Ĝ ∈ H∞(C+,Z), for some Banach space Z, if Ĝ : C+ 3 s 7−→ Ĝ(s) ∈
Z is holomorphic and

∥∥∥Ĝ∥∥∥
H∞(C+,Z)

= sup
s∈C+

∥∥∥Ĝ(s)
∥∥∥

Z
<∞; this definition applies

as Z = L(U,Y) is a Banach space). If the latter is met then the input-output
operator, given by

(Fu) (t) :=
d

dt

t∫
0

(Ψ[Du(τ)]) (t− τ)dτ − (CD)u(t),

satisfies F ∈ L(L2(0,∞; U),L2(0,∞; Y)). This follows from the Paley-Wiener
theorem [1, Theorem 1.8.3, p. 48; this version of the Paley-Wiener theorem does
not require separability of a Hilbert space. It is attached in Appendix A] upon
taking the Laplace transforms: (F̂u)(s) = Ĝ(s)û(s), s ∈ C+.

Let us remark that Ĝ is analytic on a set containing C+, which jointly with (A3)
yields ∥∥∥Ĝ(jω)

∥∥∥
L(U,Y)

≤
∥∥∥Ĝ∥∥∥

H∞(C+,L(U,Y))
, ∀ω ∈ R, j2 = −1.

Remark 1.1. If C is not admissible, the operator Ψ = LYZ with natural domain
D(Ψ) = {x ∈ H : Zx ∈ D(LY)} is closed and densely defined, with Ψ|D(A) = ZA
(for x0 ∈ D(A), Ψx0 is homogeneous part of the system output), and therefore it
has closed and densely defined adjoint operator Ψ∗ = A∗Z∗ with natural domain
D(Ψ∗) = {y ∈ L2(0,∞; Y) : Z∗y ∈ D(A∗)}, with Ψ∗|D(RY) = Z∗RY, RY = L∗Y.

Similarly, if D is not admissible, the operator Φ = AW with natural domain
D(Φ) = {u ∈ L2(0,∞; U) : Wu ∈ D(A)} is closed and densely defined, with
Φ|D(RU) =WRU, RU = L∗U, and therefore it has closed and densely defined adjoint
operator Φ∗ = LUW∗ with natural domain D(Φ∗) = {x ∈ H : W∗x ∈ D(LU)}, with
Φ∗|D(A∗) =W∗A∗.
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Fig. 1. Basic control-theoretic operators and their action
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The structure of the remaining part of this paper is as follows.
In Section 2 the time-domain theory of the lq-problem is developed. We start from

existence of weak and classical solutions and the well-posedness of the output. The
main result of this section is Theorem 2.3, which says that if the operators R and R−,
defined therein, are coercive then a solution H to the Riccati operator equation (2.7)
determines an implicit form of the optimal feedback controller solving the lq-problem,
provided that it generates a L2(0,∞,U)-function of time t or if the operator-valued
function s 7→ R− + sG(sI −A)−1D is in H∞(C+,L(U)) jointly with its L(U)-inverse,
where G is dictated by H via (2.8). If, in addition, G has an extension GΛ such that
R(D) ⊂ GΛ and (R−+GΛD) is a Banach isomorphism then Remark 2.4 enables us to
represent the optimal controller in its explicit form (2.11). Furthermore, the optimal
controller gives rise to a closed-loop state operator generating an EXS semigroup.

The frequency-domain theory of the lq-problem is presented in Section 3. In partic-
ular, we show that if the Popov spectral function Π given by (3.1) is coercive then there
exists a special spectral factorization (3.2) with spectral factor Ξ ∈ H∞(C+,L(U))
jointly with its L(U)-inverse. Moreover, since Ξ∗(0)Ξ(s) = R− + sG(sI −A)−1D this
implies the existence of the implicitly given optimal feedback controller, while the
regularity of the spectral factor implies that the explicit form of the optimal feedback
controller is valid.

In Section 4 the realization formula (3.4) is being reversed as a procedure of
finding the optimal controller formula via the knowledge of a spectral factor. This
procedure requires, however, that the pair (A,D) is approximately controllable, which
is a restrictive assumption. The method of spectral factorization was not discussed in
[19, 20, 24] and [13], however it was used in [6], a paper which was a motivation for
developing the Riccati equation theory of [24] and [19,20]. Other aspects of comparison
of our results with those existing in literature are listed in Section 5.

Sections 6, 7 and 8 bring some physically meaningful examples illustrating all re-
sults of the previous sections. In Section 6 a full solution to the lq-problem formulated
in [3] is presented. The optimal controller is built using both: the method of spectral
factorization and the time-domain approach employing the operator Riccati equation.
In examples of Sections 7 and 8, the pair (A,D) is not approximately controllable, so
the method of spectral factorization is not applicable. However, the optimal cost oper-
ator can be found using direct methods, whence the easy-realizable optimal feedback
controller is constructed via the Riccati operator equation. It is also examined that
the method of spectral factorization partially characterizes the optimal controller.

Some conclusions and a short discussion of the results are presented in Section 9.
In particular, we show therein how the lq-theory can be extended to the unstable case
where the state operator does not generate an EXS C0-semigroup.

2. TIME-DOMAIN CONSIDERATIONS

We start from two lemmas characterizing weak and classical solutions of (1.1), re-
spectively. Proofs of all results of this section are given in Appendix B.
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Lemma 2.1. By (A2), for every x0 ∈ H and u ∈ L2(0,∞; U)

x(t) = S(t)x0 + Φ︸︷︷︸
=AW

Rtu, (Rtu) (τ) :=

{
u(t− τ) if τ ≤ t,

0 if τ < t,
(2.1)

is a weak solution of (1.1), and Rt ∈ L(L2(0,∞; U)) is called the operator of reflection
at t. If in addition, the semigroup {S(t)}t≥0 is EXS, then the weak solution (2.1) is
for every x0 ∈ H and u ∈ L2(0,∞; U) in BUC0([0,∞),H), and t 7−→ 〈z, x(t)〉H is in
L2(0,∞) for every z ∈ H, x0 ∈ H and u ∈ L2(0,∞; U).

Lemma 2.2. If (A2) holds then for every u ∈W1,2([0,∞); U) and x0 ∈ H such that
x0 +Du(0) ∈ D(A), (2.1) is a classical solution of (1.1).

The output equation

y(t) = Cx(t) = C[x(t) +Du(t)]− CDu(t) (2.2)

is well-posed and is a continuous function of t. If, in addition (A1) holds, then

y(t) = (Ψx0) (t) +
d

dt

t∫
0

(Ψ[Du(τ)]) (t− τ)dτ − CDu(t). (2.3)

Finally, if all assumptions (A1), (A2) and (A3) are met then for every x0 ∈ H and
u ∈ L2(0,∞; U):

y = Ψx0 + Fu. (2.4)

Now we are in position to present the main result of this section.

Theorem 2.3. Let A generates an EXS semigroup on H and the assumptions (A1),
(A2) and (A3) hold. If the operator

R := R+N∗F + F∗QF + F∗N = R∗ ∈ L(L2(0,∞; U))

is coercive then there exists a unique optimal control, given by

uopt = Mx0, M := −R−1(F∗Q+N∗)Ψ ∈ L(H,L2(0,∞; U)), (2.5)

on which the performance index J achieves its minimum. The minimal value is

J(x0) = 〈x0,Hoptx0〉H,

where

Hopt := Ψ∗QΨ−Ψ∗(QF +N)R−1(F∗Q+N∗)Ψ = H∗opt ∈ L(U). (2.6)

Next, define

N− := N −Q(CD), R− := R− (CD)∗N −N∗(CD) + (CD)∗Q(CD) = R∗−
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and assume, in addition, that R− is coercive. Assume that H ∈ L(H), H = H∗ solves
the Riccati operator equation

〈Az,Hz〉H + 〈z,HAz〉H + 〈QCz, Cz〉Y =

=
〈
−D∗HAz +N∗−Cz,R−1

−
(
−D∗HAz +N∗−Cz

)〉
U
, z ∈ D(A).

(2.7)

Define
Gz := −D∗HAz +N∗−Cz, z ∈ D(A) (2.8)

and consider the feedback control law

u(t) = −R−1
−

d

dt

[
GA−1x(t)

]
, (2.9)

resulting in the closed-loop system

d

dt

[
A−1x

]
= x−DR−1

−
d

dt

[
GA−1x(t)

]
⇐⇒ d

dt

[
A−1x+DR−1

− GA−1x
]

= x. (2.10)

(I) If u ∈ L2(0,∞; U) then u = uopt, H = Hopt (in particular, this means that
Hopt solves (2.7)), G = Gopt, s 7−→ R−+ sGopt(sI −A)−1D is in H∞(C+,L(U))
and the solution xopt of (2.10) with initial condition x0, corresponding to uopt

reads as xopt(t) = Sopt(t)x0 = [S(t) + ΦRtM]x0, and {Sopt(t)}t≥0 is an EXS
semigroup on H.

(II) If a solution H = H∗ ∈ L(H) to the Riccati operator equation (2.7) is such
that for the corresponding G, defined by (2.8), the operator-valued function s 7−→
[R− + sG(sI − A)−1D] is in H∞(C+,L(U)) jointly with its L(U)-inverse s 7−→
[R− + sG(sI −A)−1D]−1, then the implicitly defined feedback control (2.9) is in
L2(0,∞; U) and therefore it is optimal, i.e., u = uopt, H = Hopt and G = Gopt.

Remark 2.4. If Gopt, originally defined on D(A), extends to an operator GΛ with
domain D(GΛ) such that: (i) R(D) ⊂ D(GΛ) and (ii) (R− + GΛD), (R− + GΛD)

−1 ∈
L(U) then the equation z+DR−1

− Goptz = x, in definition of D(Aopt), can be explicitly
solved:

z +DR−1
− Goptz = x =⇒GΛz + GΛDR−1

− GΛz = (R− + GΛD)R−1
− GΛz = GΛx =⇒

=⇒R−1
− GΛz = (R− + GΛD)

−1 GΛx =⇒

=⇒z = x−D (R− + GΛD)
−1 GΛx.

Consequently, the closed-loop state operator can be rewritten as

Aoptx = A
[
x−D (R− + GΛD)

−1 GΛx
]
,

D(Aopt) =
{
x ∈ D(GΛ) : x−D (R− + GΛD)

−1 GΛx ∈ D(A)
}
⊂ D(C).

This form of Aoptx suggests that the optimal feedback reads as

u = − (R− + GΛD)
−1 GΛx, x ∈ D(GΛ), (2.11)

what can easily be confirmed by the Laplace transformation.
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A part of a proof of the Hille-Phillips-Yosida generation theorem is to show that
the operator As ∈ L(H), Asf := sA(sI − A)−1f satisfies lims→∞,s∈RAsf = Af
for every f ∈ D(A) [15, Lemma 3.3, p. 10]. Therefore As has been called the Yosida
approximation of A. Since GA−1 ∈ L(H,U) the limit lims→∞,s∈R sG(sI−A)−1z exists
for z ∈ D(A) and it is well-known that it may exist on some domain larger than D(A).
Thus the Yosida approximation of Gopt,

GΛz := lim
s→∞,s∈R

sGopt(sI −A)−1z,

D(GΛ) =
{
z ∈ H : there exists lim

s→∞,s∈R
sGopt(sI −A)−1z

}
,

or even its restriction to R(D), may serve as the needed extension of Gopt, provided
that the limit

(R− + GΛD)u = lim
s→∞,s∈R

(R−u+ sGopt(sI −A)−1Du), u ∈ U

defines a Banach isomorphism on U, and if the latter holds then it follows from the
proof of Theorem 2.3 (see Appendix B) that the optimal cost operator H satisfies also
the closed-loop Lyapunov/Riccati operator equation

〈Aoptx,Hx〉H + 〈x,HAoptx〉H =

= −
[

Cx
− (R− + GΛD)

−1 GΛx

]∗ [
Q N
N∗ R

] [
Cx

− (R− + GΛD)
−1 GΛx

]
, x ∈ D(Aopt).

(2.12)

3. THE FREQUENCY-DOMAIN APPROACH

By the Paley-Wiener theorem [1, Theorem 1.8.3, p. 48],

J(u, x0) = J(û, x0) = 〈û,Πû〉L2(jR,U) + 〈û,
[
Ĝ∗Q+N∗

]
Ψ̂x0〉L2(jR,U)+

+ 〈Ψ̂x0,
[
QĜ+N

]
û〉L2(jR,Y)+

+ 〈Ψ̂x0, QΨ̂x0〉L2(jR,Y), û ∈ L2(jR,U), x0 ∈ H,

where Π stands for the Popov spectral function,

Π(jω) := R+ 2 Re[N∗Ĝ(jω)] + Ĝ∗(jω)QĜ(jω) = Π∗(jω), (3.1)

which, thanks to the continuity and boundedness of Ĝ on jR, is L(U)-valued bounded
and continuous on jR. Here we use the notation 2 ReZ := Z + Z∗, Z ∈ L(U).
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Theorem 3.1. Assume that the assumptions (A1), (A2) and (A3) hold, and A
generates an EXS semigroup. Let Π be coercive. Then the following facts hold.

(I) R is coercive and, by Theorem 2.3, the lq-problem has a unique
L2(0,∞; U)-minimizer, whence, by the Paley-Wiener theorem, a unique
H2(C+; U)-minimizer.
There exists a spectral factorization

Π(jω) = Ξ∗(jω)Ξ(jω), (3.2)

where Ξ ∈ H∞(C+,L(U)) jointly with C+ 3 s 7−→ Ξ−1(s) ∈ L(U). This spectral
factorization is uniquely determined up to a constant, i.e., independent of s,
unitary operator multiplier which belongs to L(U).
Let P+ stand for the projection from L2(jR; U) onto its closed subspace
H2(C+; U). Then the H2(C+; U)-minimizer is given by

û(s) = −Ξ−1(s)P+

{
Ξ−∗(jω)

[
Ĝ∗(jω)Q+N∗

]
(̂Ψx0)(jω)

}
. (3.3)

(II) R− = Π(0) = Ξ∗(0)Ξ(0) is coercive, so we can discuss the operator Riccati equa-
tion (2.7). To each its solution H, or to each G given by (2.8), there corresponds
a spectral factorization (3.2), where

Ξ(s) := V + V −∗Gs(sI −A)−1D ∈ L(U) (3.4)

and s 7−→ Ξ(s) ∈ H∞(C+,L(U)). Furthermore, V −∗G is admissible.
If L(U)-inverse of Ξ is in H∞(C+,L(U)) then the implicit formula (2.9) defines
optimal feedback controller.
Finally,

there exists lim
s→∞,s∈R

sG(sI −A)−1Du := GΛDu ⇐⇒

⇐⇒ there exists lim
s→∞,s∈R

Ξ(s)u := Du,

and then V −∗(R− + GΛD) = D. Thus R− + GΛD is invertible iff so is D, a fact
important for verification whether the explicit formula for the optimal feedback
controller (2.11) holds true.

Theorem 3.1 is proved in Appendix C.

4. THE METHOD OF SPECTRAL FACTORIZATION

Let us treat (3.4) not as a definition of a spectral factor but an equation determining
G. Such the equation is said to be the realization identity or equation. Then, by (2.8)
and (3.4) a unique spectral factor corresponds to the optimal cost, thus this spectral
factor is necessarily in H∞(C+,L(U)) jointly with its inverse and is determined up
to a unitary operator which is hidden in V . Thus if the LHS of (3.4) is a spectral
factor in H∞(C+,L(U)) jointly with its inverse then the realization identity must be
satisfied, out of uniqueness, by G, corresponding to the optimal control/controller.
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It should be emphasized that the realization equation is generally not uniquely
solvable. Nevertheless, if the system is approximately controllable, i.e., if R(Φ) = H
(iff ker Φ∗ = {0}), then the realization identity cannot have more then one solution,
so it determines uniquely the optimal controller (in its implicit form), provided that
the LHS of the realization identity is a spectral factor belonging to H∞(C+,L(U))
jointly with its inverse.

Thus if, in addition, the system is approximately controllable, then GΛ or
D−1V −∗GΛ are uniquely determined by the following equivalent realization equations

Ξ∗(0)Ξ(s) = R− + GΛD + ĜG(s) ⇐⇒ Ξ∗(0) [Ξ(s)−D] = ĜG(s) ⇐⇒
⇐⇒ Ξ(s) = D

[
I +D−1V −∗GΛA(sI −A)−1D

]
,

(4.1)

where ĜG(s) := GΛA(sI − A)−1D, and the second line arises by acting with the
operator D−1V −∗ on both sides of the last identity in the first line.

Remark 4.1. If τ is the operator of boundary control (see [11] for a definition) then,
since D(A) ⊂ ker τ , τD = −I, one has

τA(sI −A)−1D = sτ(sI −A)−1D − τD = I

and (4.1) can also be written as

Ξ(s) = (Dτ + V −∗GΛ)A(sI −A)−1D.

5. COMPARISON WITH EARLIER WORKS

Consider the tower (or scale) of Hilbert spaces

H1 ↪→ H(= H∗) ↪→ H−1,

with continuous dense embeddings, where H1 = (D(A), ‖·‖A), ‖x‖A := ‖Ax‖H whilst
H−1 stands for the completion of H under the norm ‖x‖H−1 := ‖A−1x‖H; the latter
arises by taking the limits of all sequences of H, which are Cauchy sequences with
respect to ‖x‖H−1

.
Parallely, consider also the tower of Hilbert spaces

Z−1 ←↩ H(= H∗)←↩ Z1,

with continuous dense embeddings, where Z1 = (D(A∗), ‖ · ‖A∗), ‖x‖A∗ := ‖A∗x‖H
whilst Z−1 stands for the completion of H under the norm ‖x‖Z−1 := ‖A−∗x‖H; the
latter arises by taking the limits of all sequences of H, which are Cauchy sequences
with respect to ‖x‖Z−1

.
The bilinear form

〈x, z〉H−1×Z1
:=
〈
Aex,A−∗z

〉
H×H

,

where Ae ∈ L(H,H−1) denotes the extension of A ∈ L(H1,H), an isometry from H1,
onto H, defines duality pairing between H−1 and Z1. Here H−1 is isomorphic with
[D(A∗)]∗ whilst Z−1 is isomorphic with [D(A)]∗.



38 Piotr Grabowski

It is proved in [24] that if Π has the spectral factorization Π(jω) = [Ξ(jω)]∗Ξ(jω),
where Ξ, Ξ−1 ∈ H∞(C+,L(U)) and Ξ(s) −→ D as s → ∞, s ∈ R with D and
D−1 ∈ L(U) (regular spectral function), then the optimal cost operator X solves
the operator Riccati [24, Theorem 12.8, p. 322, especially formula (12.7)] and [19,
Corollary 45, p. 3712]; see also [13, Theorem 3, especially formula (6)]

A∗X +XA+ C∗QC = (B∗ΛwX +NC)∗(D∗D)−1(B∗ΛwX +NC), (5.1)

where all terms are in L(H1,Z−1) and, actually, X maps D(A) into D(B∗Λw). Here
B ∈ L(U,H−1) iff B∗ ∈ L(Z1,U), C ∈ L(H1,Y) iff C∗ ∈ L(Y,Z−1), B∗Λw (B∗Λ) denotes
weak (strong) extension of B∗, defined as the weak (strong) limit of sB∗(sI −A)−1x
as s → ∞, s ∈ R and D(B∗Λw) consists of those x ∈ H for which the weak limit
exists (D(BΛ∗) consists of those x ∈ H for which the strong limit exists). The optimal
controller is given on D(A) as

Fx = −(D∗D)−1(B∗ΛwX +NC)x, x ∈ D(A).

The spectral factor Ξ can be realized as a transfer function of the system with the
state operator A, control operator B, observation operator −DFΛ and the feedtrough
operator D [24, p. 329, formula (12.5)], i.e.,

Ξ(s) = D −DFΛ(sI −A)−1B = D
[
I − FΛ(sI −A)−1B

]
. (5.2)

Finally, the state operator of the optimal closed-loop system reads as

Aopt = A+BFΛ, D(Aopt) = {x0 ∈ D(FΛ) : (A+BFΛ)x0 ∈ H},

so the optimal controller is u = Foptx0, where Foptx0 = FΛx0 for x0 ∈ D(Aopt).
In the case of (1.1), the results of [24] follows from Theorems 3.1 and 2.3, and our

Riccati operator equation (2.7) slightly differs from (5.1) as:

(a) it does not employ the feedthrough operator D,
(b) it is stated in a weak sense within the state space H,
(c) even if we identify X with H (both operators express the minimal cost), C with
C and notify that B∗Λw is an extension of D∗A∗ then the ordering of operators
defining G and F is not the same and in (2.7) the operator N− appears instead of
N in (5.1). Thus our Riccati equation (2.7) is astonishingly not the same as (5.1).

Next, EXS of {Sopt(t)}t≥0 is not shown in [24], though we still do not know whether
it decays with the same rate or faster than {S(t)}t≥0. Here our Theorem 2.3 jointly
with Remark 2.4 confirm the implication (ii) ⇒ (i) of [13, Theorem 3].

On the other side our results and those of [24] are very close in the
frequency-domain aspects as:

(d) the idea of Remark 2.4 coincides with the concept of a regular spectral factor,
(e) comparing the second line of (4.1) with (5.2) we get a relationship between GΛ

and FΛ,
FΛ = −D−1V −∗GΛ. (5.3)
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In next sections we shall solve certain exemplary standard lq-problems for which
Q = R = I and N = 0. In this case N− = −CD whilst R, R− and the Popov spectral
function Π are coercive:

R = I+F∗F ≥ I, R− := I+(CD)∗(CD) ≥ I; Π(jω) = I+Ĝ∗(jω)Ĝ(jω) ≥ I, ∀ω∈R.

6. FULL SOLUTION OF THE EXAMPLE BY CHAPELON AND XU

In this section we revise the example of [3] where the standard lq-problem has been
formulated for a system with the state operator A acting in H = L2(0, 1)⊕ L2(0, 1),

A

[
x1

x2

]
=

[
−m1x

′
1

m2x
′
2

]
, m1 > 0, m2 > 0,

D(A) =

{
x =

[
x1

x2

]
∈W1,2(0, 1)⊕W1,2(0, 1) : x1(0) = αx2(0), x2(1) = βx1(1)

}
,

which generates an EXS C0-semigroup, provided that α2β2 < 1. This fact is not
explicitly proved in [3], where the authors recall an older result due to D. Russell
[3, Proposition 3.1, p. 592], however we are able to give a separate Lyapunov-type
proof. For that, define the following matrix operators of multiplication E1 = E∗1 ,
E2 = E∗2 and E3 = E∗3 ∈ L(H), E∗3 ≥ 0:

(E1x)(θ) :=
1

1− α2β2
diag

{
1

m1
, 0

}
x(θ), (E2x)(θ) :=

1

1− α2β2
diag

{
0,

1

m2

}
x(θ)

and
(E3x)(θ) = diag

{
1− θ
m1

,
θ

m2

}
x(θ), x ∈ H.

Notice that its linear combination k1E1 + k2E2 + E3 satisfies

〈Ax, (k1E1 + k2E2 + E3)x〉H + 〈x, (k1E1 + k2E2 + E3)Ax〉H =

= −‖x‖2H +

{
β2 − k1

1− α2β2
+

k2β
2

1− α2β2

}
x2

1(1)+

+

{
α2 +

k1α
2

1− α2β2
− k2

1− α2β2

}
x2

2(0), x ∈ D(A).

(6.1)

Solving an appropriate linear system of equations determining k1, k2 we establish that
E := (α2 + 1)β2E1 + (β2 + 1)α2E2 + E3 satisfies the Lyapunov operator equation

〈Ax, Ex〉H + 〈x, EAx〉H = −‖x‖2H , x ∈ D(A).

Now EXS for α2β2 < 1 ⇔ E ≥ 0 easily follows from either Datko’s theorem. In this
example Y = H and C = I, whence admissibility of C is equivalent to EXS, and E is
the system observability gramian. We proved that the semigroup generated by A is
EXS semigroup and (A1) is met.
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The authors of [3] have used the framework of well-posed systems rather than our
model (1.1), so it is worth to note that, here, the operator of boundary control (see
[11] for more details) reads as

τ

[
x1

x2

]
=

[
x1(0)− αx2(0)

x2(1)− βx1(1)

]
, D(τ) ⊂W1,2(0, 1)⊕W1,2(0, 1). (6.2)

A control takes its values in U = R2, and the factor control operator D is given by

Du = Du, D =
1

αβ − 1

[
1 α1

β1 1

]
.

Standard computations yield

A∗
[
v1

v2

]
=

[
m1v

′
1

−m2v
′
2

]
,

D(A∗) =

{
v =

[
v1

v2

]
∈W1,2(0, 1)⊕W1,2(0, 1) :

{
m1v1(1) =βm2v2(1)

αm1v1(0) = m2v2(0)

}}
.

Thus we have

D∗A∗v = DT

1∫
0

(A∗v)(θ)dθ =

[
m1v1(0)

m2v2(1)

]
and this observation operator is admissible. Indeed, the operator

(HΦv)(θ) =
1

1− α2β2
diag

{
(α2 + 1)m1, (β

2 + 1)m2

}
v(θ), v ∈ H

is the system controllability gramian, because it solves the Lyapunov operator equation

〈A∗v,HΦv〉H + 〈v,HΦA∗v〉H = −m2
1v

2
1(0)−m2v

2
2(1) = −‖D∗A∗v‖2U , v ∈ D(A∗).

By duality, the factor control operator D is admissible, whence (A2) is met. Moreover,
the system is infinite-time exactly controllable as HΦ is a coercive operator.

Next,

(A(sI −A)−1z)(θ) =


se−

sθ
m1 c− z1(θ) + s

m1

θ∫
0

e−
s(θ−τ)
m1 z1(τ)dτ

1
αse

sθ
m2 c− z2(θ)− s

m2

θ∫
0

e
s(θ−τ)
m2 z2(τ)dτ

 ,
where

c =
1

1
αe

s
m2 − βe−

s
m1

 β

m1

1∫
0

e−
s(1−τ)
m1 z1(τ)dτ +

1

m2

1∫
0

e
s(1−τ)
m2 z2(τ)dτ

 .
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On constant functions zi(θ) ≡ zi, i = 1, 2:

c =
z1β(1− e−

s
m1 ) + z2(e

s
m2 − 1)

1
αe

s
m2 − βe−

s
m1

,

A(sI −A)−1z =


z1(αβe−

s
m2 − 1) + z2α(1− e−

s
m2 )

1− αβe−
(

s
m1

+ s
m2

) e−
sθ
m1

z1βe
− s
m2 (1− e−

s
m1 ) + z2e

− s
m2 (αβe−

s
m1 − 1)

1− αβe−
(

s
m1

+ s
m2

) e
sθ
m2

 ,
whence, taking z = Du, we get

A(sI −A)−1D = Ĝ(s) =
1

1− αβe−s
(

1
m1

+ 1
m2

)
 e−

sθ
m1 αe−

s
m2 e−

sθ
m1

βe−
s
m1 e−

s(1−θ)
m2 e−

s(1−θ)
m2


(6.3)

with Ĝ ∈ H∞(C+,L(U)), so (A3) is satisfied.
The transfer function can be represented in the right coprime form Ĝ(s) =

U(s)M−1(s) with

U(s) =

 e−
sθ
m1 0

0 e−
s(1−θ)
m2

 , M(s) =

[
1 −αe−

s
m2

−βe−
s
m1 1

]
.

Denoting by Z∗(s) := ZT (−s) the para-Hermitian adjoint of Z(s), we see that U∗(s) =
UT (−s) = U(−s) = U−1(s), so U(s) is para-unitary. Now

Π(s) = I + Ĝ∗(s)Ĝ(s) = I + M−T (−s)UT (−s)U(s)M−1(s) = I + M−T (−s)M−1(s)

which facilitates finding a spectral factor of Π(jω) ≥ I by reducing the problem to
finding a spectral factor of an entire matrix-valued function

MT (−s)Π(s)M(s) = I + M∗(s)M(s) =

[
2 + β2 −αe−

s
m2 − βe

s
m1

−αe
s
m2 − βe−

s
m1 2 + α2

]
.

We shall seek for a factorization I + M∗(s)M(s) = X∗(s)X(s) with

X(s) =

[
m −ne−

s
m2

−pe−
s
m1 q

]
.

This leads to the system of equations:

m2 + p2 = 2 + β2, (6.4)
nm = α, (6.5)
pq = β, (6.6)

n2 + q2 = 2 + α2. (6.7)
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Eliminating n, p from (6.7) and (6.4) with the aid of (6.5) and (6.6), respectively, we
get

n =
α

m
, p =

β

q
, q2 = 2 + α2 − α2

m2
=⇒ p2 =

β2m2

(2 + α2)m2 − α2
,

and a biquadratic equation determining m:

(2 + α2)m4 −
[
α2 − β2 + (2 + α2)(2 + β2)

]
m2 + α2(2 + β2) = 0. (6.8)

Observe that the LHS of (6.8) at m2 = 0 equals: α2(2 + β2) ≥ 0. Let

µ := α2 − β2 + (2 + α2)(2 + β2) = (2 + β2) + (2 + α2) + α2(2 + β2) ≥ 4 + 2α2 > 0

and observe that the determinant of (6.8) satisfies

µ2 ≥ ∆ = µ2 − 4α2(2 + α2)(2 + β2) >

>
[
(2 + α2) + α2(2 + β2)

]2 − 4α2(2 + α2)(2 + β2) =

=
[
(2 + α2)− α2(2 + β2)

]2 ≥ 0.

Hence (6.8) has four real roots mB > mA ≥ 0 ≥ −mA > −mB with equality signs iff
α = 0. Furthermore, the LHS of (6.8) at m2 = 2 equals: −β2(2+α2) ≤ 0, so mB ≥

√
2

(=⇐⇒ β = 0) and qB ≥
√

2 (=⇐⇒ α = 0). Take the solution

m = mB :=

√
µ+
√

∆

2(2 + α2)
, n =

α

mB
,

p =
βmB√

(2 + α2)m2
B − α2

, q =

√
(2 + α2)m2

B − α2

mB
.

Since

X−1(s) =
1

mq
[
1− np

mqe
−( s

m1
+ s
m2

)
] [ q ne−

s
m2

pe−
s
m1 m

]
,

then s 7−→ X(s) ∈ H∞(C+,L(C2)) jointly with s 7−→ X−1(s) iff

1 >
n2p2

m2q2
=

α2β2

[(2 + α2)m2
B − α2]

2 ⇐⇒
[
(2 + α2)m2

B − α2
]2
> α2β2, (6.9)

but the last inequality holds as α2β2 < 1 and

(2 + α2)m2
B − α2 =

µ+
√

∆− 2α2

2
≥ µ− 2α2

2
> 2 =⇒

[
(2 + α2)m2

B − α2
]2 ≥ 4.

Consequently the spectral factor Ξ(s) of Π reads as

Ξ(s) = X(s)M−1(s) =

=
1

1− αβe−( s
m1

+ s
m2

)

[
m −ne−

s
m2

−pe−
s
m1 q

][
1 αe−

s
m2

βe−
s
m1 1

]
=

=
1

1− αβe−( s
m1

+ s
m2

)

[
m− nβe−( s

m1
+ s
m2

) (mα− n)e−
s
m2

(qβ − p)e−
s
m1 q− pαe−( s

m1
+ s
m2

)

]
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and belongs to H∞(C+,L(C2)) jointly with Ξ−1(s),

Ξ−1(s) =
1

mq− npe−( s
m1

+ s
m2

)

[
q− pαe−( s

m1
+ s
m2

) (n−mα)e−
s
m2

(p− qβ)e−
s
m1 m− nβe−( s

m1
+ s
m2

)

]
.

For obtaining the optimal controller we get

D = lim
s→∞,s∈R

Ξ(s) =

[
m 0

0 q

]
, Ξ(0) =

1

1− αβ

[
m− nβ mα− n

qβ − p q− pα

]

and, since mq =
√

(2 + α)2m2
B − α2 ≥

√
2,

D−1 =

[
1
m 0

0 1
q

](
= lim
s→∞,s∈R

Ξ−1(s)

)
, Ξ−1(0) =

1

mq− np

[
q− pα n−mα

p− qβ m− nβ

]
.

From the realization identity (4.1), which here takes the form:

I −D−1 Ξ(s)︸︷︷︸
=X(s)M−1(s)

=

=FΛ︷ ︸︸ ︷
−D−1 V −∗︸︷︷︸

=Ξ−∗(0)

GΛ

=Ĝ(s)︷ ︸︸ ︷
A(sI −A)−1D = FΛ Ĝ(s)︸︷︷︸

=U(s)M−1(s)

⇐⇒

⇐⇒ M(s)−D−1X(s) = FΛU(s) ⇐⇒[
1 −αe−

s
m2

−βe−
s
m1 1

]
−

[
1
m 0

0 1
q

][
m −ne−

s
m2

−pe−
s
m1 q

]
= FΛ

e− sθ
m1 0

0 e−
s(1−θ)
m2

 ,
and (5.3), we determine (uniquely as infinite-time exact controllability implies ap-
proximate controllability) the optimal controller

u = FΛx=

[
( n
m − α)x2(0)

(p
q − β)x1(1)

]
=⇒ V −∗GΛx = −DFΛx =

[
(αm− n)x2(0)

(βq− p)x1(1)

]
=⇒

=⇒ GΛx=
1

1− αβ

[
(m− nβ)(αm− n)x2(0) + (qβ − p)2x1(1)

(αm− n)2x2(0) + (q− pα)(qβ − p)x1(1)

]
,

D(FΛ) = D(GΛ)⊃W1,2(0, 1)⊕W1,2(0, 1) ⊃ R(D).

A unique (by EXS) solution to the Lyapunov operator equation

〈Ax,Hx〉H + 〈x,HAx〉H = −‖Cx‖2H + ‖V −∗GΛx‖
2
U = −‖Cx‖2H + ‖V −∗Gx‖2U =

= −‖x‖2H + (αm− n)2x2
2(0) + (βq− p)2x2

1(1), x ∈ D(A)
(6.10)

has the form of a linear combination k1E1 + k2E2 + E3. Indeed, comparing the right
side of (6.1) with the right side of the second line in (6.10) we get the linear equations
determining k1, k2[

−1 β2

α2 −1

][
k1(1− α2β2)−1

k2(1− α2β2)−1

]
=

[
(βq− p)2 − β2

(αm− n)2 − α2

]
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with a unique solution:

k1 = β2−(βq−p)2 +α2β2−β2(αm−n)2, k2 = α2−(αm−n)2 +α2β2−α2(βq−p)2,

which can be simplified, using consecutively (6.4), (6.5), (6.6) and (6.7) (elimination
of p2, mn, qp and β2(q2 + n2) for k1 and elimination of α2(m2 + p2), mn, qp and n2

and for k2, respectively) to

k1 = (m2 − 2)(1− α2β2), k2 = (q2 − 2)(1− α2β2).

Thus k1 ≥ 0 (=⇐⇒ β = 0) and k2 ≥ 0 (=⇐⇒ α = 0) and consequently H ≥ 0 or
even coercive if αβ 6= 0. Hence

H = (m2 − 2)(1− α2β2)E1 + (q2 − 2)(1− α2β2)E2 + E3, L(H) 3 H = H∗ ≥ 0

and we claim that H solves the Riccati operator equation (2.7). Indeed, eliminating
Ei, i = 1, 2, 3, we get

(Hx) (θ) =

[
diag

{
m2 − 1− θ

m1
,
q2 − 2 + θ

m2

}]
x(θ),

whence
x ∈ D(A) =⇒ Gx = −D∗HAx+N∗−Cx = −D∗[HAx+ x] =

=
1

1− αβ

[
1 β

α 1

]
1∫
0

{[
(1 + θ −m2)x′1(θ) + x1(θ)

(θ − 2 + q2)x′2(θ) + x2(θ)

]}
dθ =

=
1

1− αβ

[
1 β

α 1

][
(2−m2)x1(1) + (m2 − 1)x1(0)

(q2 − 1)x2(1) + (2− q2)x2(0)

]
=

=
1

1− αβ

[
1 β

α 1

][
(2−m2)x1(1) + α(m2 − 1)x2(0)

β(q2 − 1)x1(1) + (2− q2)x2(0)

]
=

=
1

1− αβ

[
(2−m2 + β2q2 − β2)x1(1) + (2β − q2β + αm2 − α)x2(0)

(2α−m2α+ βq2 − β)x1(1) + (2− q2 + α2m2 − α2)x2(0)

]
= GΛx,

where similar rules of simplification were applied while proving G = GΛ|D(A).
Finally, we find the closed-loop system state operator. Since for x ∈W1,2(0, 1)⊕

W1,2(0, 1) one has:

x−D(R− + GΛD−1GΛ︸ ︷︷ ︸
=−FΛ

)x =

[
x1 + 1

1−αβ
αm−n

m
x2(0)1+ 1

1−αβ
α(qβ−p)

q
x1(1)1

x2 + 1
1−αβ

β(αm−n)
m

x2(0)1+ 1
1−αβ

qβ−p
q

x1(1)1

]
∈ D(A)

⇐⇒ x1(0) =
n

m
x2(0), x2(1) =

p

q
x1(1),

then

Aoptx = A[x−D(R− + GΛD)−1GΛx] = A[x+DFΛx] = Ax =

[
−m1x

′
1

m2x
′
2

]
,

D(Aopt) =

{
x ∈W1,2(0, 1)⊕W1,2(0, 1) : x1(0) =

n

m
x2(0), x2(1) =

p

q
x1(1)

}
.
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ThusAopt has the same structure asA with α and β replaced by n
m and p

q , respectively.
Hence the result concerning EXS of the semigroup {S(t)}t≥0 applies to {Sopt(t)}t≥0,

i.e., {Sopt(t)}t≥0 is EXS iff
(

n
m

p
q

)2

< 1. However, the last inequality was shown to be
true – see (6.9), confirming the general EXS result of Theorem 2.3.

Observe that H is a solution to the Lyapunov/Riccati closed-loop operator equa-
tion (2.12) which here reduces to

〈Aoptx,Hx〉H + 〈x,HAoptx〉H = −‖Cx‖2H − ‖FΛx‖2U =

= −‖x‖2H −
( n

m
− α

)2

x2
2(0)−

(
p

q
− β

)2

x2
1(1), x ∈ D(Aopt).

(6.11)

Indeed, for x ∈ D(Aopt) we have

〈Aoptx,Hx〉H + 〈x,HAoptx〉H =

=

1∫
0

(1 + θ −m2)
dx2

1(θ)

dθ
dθ +

1∫
0

(q2 − 2 + θ)
dx2

2(θ)

dθ
dθ =

= (2−m2)x2
1(1)− (1−m2)x2

1(0) + (q2 − 1)x2
2(1)− (q2 − 2)x2

2(0)− ‖x‖2H =

=

[
2−m2 +

p2

q2
(q2 − 1)

]
x2

1(1) +

[
2− q2 +

n2

m2
(m2 − 1)

]
x2

2(0)− ‖x‖2H

from which (6.11) follows easily by applying (6.4), (6.5), (6.6) and (6.7).
From the Lyapunov characterization of admissibility, applied to (6.11), we conclude

that FΛ is admissible with respect to {Sopt(t)}t≥0, whence u ∈ L2(0,∞; U) and thus
u is optimal.

Observe that FΛ|D(Aopt)
= τ |D(Aopt)

, where τ is the operator of boundary control
given by (6.2). This fact is basic for establishing the structure of optimal control
closed-loop system depicted in Figure 2, where the external connections realize the
optimal feedback control u = FΛx.

����n
m − α q

u1b
�

-
-

@@
��-mα -

x1(0) = u1 + αx2(0)

-

@@
��
mβ�

-

x2(1) = u2 + βx1(1)

�

� b
q -
���
��
p
q − β

-
0 1

θ

x1(θ)

x2(θ) u2

Fig. 2. Open/closed-loop control system for the Chapelon-Xu example

Comment 6.1. The whole analysis, towards the optimal controller design, presented
in [3] ends with finding the spectral factor

Ξ(s) =

 √2 α√
2
e−

s
m2

0
√

α2+4
2
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in the case where β = 0. It coincides with the above computations (here m =
√

2,

n = α√
2
, p = 0 and q =

√
α2+4

2 ). In his discussion, J. Malinen [12] tried to judge
what kind of a Riccati equation would be the best to determine the optimal con-
troller, but without any particular conclusion how to complete the unfinished design
by A. Chapelon and C.-Z. Xu [3], though his critique qualifies the problem as “math-
ematically simple” [3, p. 606].

7. SOLUTION OF THE LQ-PROBLEM FORMULATED IN [26]. THE SISO CASE

7.1. PRELIMINARY CONSIDERATIONS

In [26] the lq-problem has been formulated for the dynamical system modeling prop-
agation of pollutants in a river. In this section we solve the standard lq-problem for a
controllable part of this model arising from a general one [26, p. 174] by extracting its
second component, describing how the concentration of dissolved oxygen (DO) varies
in time. Observe that the second component is affected by the first component but
not conversely and the control does not excite the first component, which therefore
remains uncontrolled.

- θ

γ

η

?

?

0 a

Fig. 3. Configuration of measurement and control in the SISO case

Let us consider the SISO case, i.e., the case of a one point control (one aerator)
located at θ = η > 0 and one output (one sensor measuring DO) located at θ = γ > η
as depicted in Figure 3. Let H = L2(0, a), a > 0 and U = Y = R. Then the system
dynamics is governed by (1.1) with the following objects. The state operator is

Ax = −vx′ −K2x, D(A) = W1,2
0 (0, a), K2 > 0

and it generates an EXS semigroup on H. The observation functional is given by

Cx = x(γ), D(C) = {x ∈ H : x is continuous at θ = γ} .

Finally, the factor control vector d ∈ H takes the form

d(θ) = −1

v
e−

K2
v (θ−η)1(θ − η) = −1

v
e−

K2
v (θ−η)χ[η,a](θ), θ ∈ [0, a].
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Though, from [26, Theorem 3.2] we know that C is admissible we can strengthen
this result by showing that the operator L(H) 3 HΨ = H∗Ψ ≥ 0, defined as

(HΨx) (θ) :=
1

v
e−

2K2
v (γ−θ)χ[0,γ](θ)x(θ), x ∈ H, (7.1)

is the observability gramian. Indeed,

〈Ax,HΨx〉H + 〈x,HΨAx〉H = −
γ∫
0

e−
2K2
v (γ−θ) d

dθ

[
x2(θ)

]
dθ−

− 2K2

v

γ∫
0

e−
2K2
v (γ−θ)x2(θ)dθ = −x2(γ) = − |Cx|2 , x ∈ D(A).

Next, d is an admissible factor control vector (this fact has not been examined in
[26]). Indeed, by duality, its is enough to show that the observation functional d∗A∗
is admissible with respect to the adjoint semigroup. Here

A∗w = vw′ −K2w, D(A∗) =
{
w ∈W1,2(0, a) : w(a) = 0

}
. (7.2)

Observe that

d∗A∗w = 〈A∗w, d〉H =

a∫
η

[
K2

v
w(θ)− w′(θ)

]
e−

K2
v (θ−η)dθ = w(η), w ∈ D(A∗)

and because HΦ ∈ L(H), HΦ = H∗Φ ≥ 0

(HΦx) (θ) :=
1

v
e

2K2
v (η−θ)χ[η,a](θ)x(θ), x ∈ H, (7.3)

solves the Lyapunov operator equation (HΦ is the controllability gramian)

〈A∗w,HΦw〉H + 〈w,HΦA∗w〉H =
a∫
η

e
2K2
v (η−θ) d

dθ

[
w2(θ)

]
dθ−

− 2K2

v

a∫
η

e
2K2
v (η−θ)w2(θ)dθ = −w2(η) = − |d∗A∗w|2 , w ∈ D(A∗),

then the admissibility of d∗A∗ follows from Lyapunov characterization of admissi-
bility. Furthermore, kerHΨ and kerHΦ are both nontrivial, whence the system is
neither (infinite-time) approximately observable nor approximately controllable, and
the method of spectral factorization is not applicable in its full extend.

Since (
(sI −A)−1x

)
(θ) =

1

v

θ∫
0

e−
s+K2
v (θ−ξ)x(ξ)dξ,

(
A(sI −A)−1x

)
(θ) = −x(θ) +

s

v

θ∫
0

e−
s+K2
v (θ−ξ)x(ξ)dξ,

(7.4)
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then with δ := K2

v (γ − η) > 0

(A(sI−A)−1d)(θ) =
1

v
e−

s+K2
v (θ−η)1(θ−η), Ĝ(s) = CA(sI−A)−1d =

1

v
e−

s
v (γ−η)e−δ

and Ĝ ∈ H∞(C+).
Recalling that the resolvent of A is Laplace transform of the semigroup generated

by A and substituting t = θ−ξ
v in (7.4) we get

(S(t)X) (θ) = e−K2t

{
X(θ − vt) if a ≥ θ ≥ vt

0 if θ < vt

}
, t ≥ 0, θ ∈ [0, a], (7.5)

whence {S(t)}t≥0 even decays in a finite-time.

7.2. DIRECT SOLUTION

We seek for a solution of (2.7) in the form H = aHΨ + bH1, where

(H1x) (θ) :=
1

v
e−

2K2
v (η−θ)χ[η,γ](θ)x(θ) =

e2δ

v
e−

2K2
v (γ−θ)χ[η,γ](θ)x(θ), x ∈ H.

Here N− = −Cd =
1

v
e−δ, R− := 1 + (Cd)2 = 1 +

1

v2
e−2δ and the Riccati operator

equation (2.7) takes the form

〈Az,Hz〉H + 〈z,HAz〉H + (Cz)2
= R−1

− [〈Az,Hd〉H + (Cd)∗Cz]2 , z ∈ D(A).

Its LHS is

〈Az,Hz〉H + 〈z,HAz〉H + (Cz)2
= (1− a)z2(γ) + 〈Az, bH1z〉H + 〈z, bH1Az〉H =

= (1− a)z2(γ)− b
γ∫
η

[
2z(θ)z′(θ) +

2K2

v
z2(θ)

]
e−

2K2
v (η−θ)dθ =

= (1− a− e2δb)z2(γ) + bz2(η).

Since

(Cd)∗Cz = −1

v
e−δz(γ),

〈Az,HΨd〉H = 1
v e
−δ

γ∫
η

[
K2

v z(θ) + z′(θ)
]
e
K2
v (θ−γ)dθ = 1

v e
−δz(γ)− 1

v e
−2δz(η),

〈Az,H1d〉H =
1

v
e−δ

γ∫
η

[
K2

v z(θ) + z′(θ)
]
e
K2
v (θ−η)dθ = 1

v e
δz(γ)− 1

v z(η),

the RHS of our Riccati operator equation reads as

R−1
− [〈Az,Hd〉H + (Cd)∗Cz]2 =

=
1

v2 + e−2δ

{[
(a− 1)e−δ + beδ

]
z(γ)−

[
ae−2δ + b

]
z(η)

}2
.
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It is not difficult to establish that both sides are equal for

a =
v2

v2 + e−2δ
, b = (1− a)e−2δ =

e−4δ

v2 + e−2δ
,

whence

(Hx) (θ) =
1

v
e−

2K2
v (γ−θ)


a on [0, η)

1 on [η, γ]

0 on (γ, a]

x(θ), (7.6)

and consequently

Gz := [〈Az,−Hd〉H − (Cd)∗Cz] =
e−2δ

v
z(η), z ∈ D(A).

If z ∈ Reg[0, a] – the space of regulated functions, i.e., functions having one-sided
(finite) limits at every point θ ∈ [0, a] then (recall that z is bounded on [0, a]), by the
Lebesgue dominated convergence theorem:

lim
s→∞,s∈R

sG(sI −A)−1z =
e−2δ

v2
lim

s→∞,s∈R
s

η∫
0

e−
s+K2
v (η−ξ)z(ξ)dξ =

= e−2δ

v lim
s→∞,s∈R

s

s+K2

∞∫
0

e−tz

(
η − v

s+K2
t

)
1

(
s+K2

v
η − t

)
dt =

e−2δ

v
z(η−)

and therefore we may take

GΛz :=
e−2δ

v
z(η−), D(GΛ) = Reg[0, a].

Now, d ∈ D(GΛ) with

GΛd =
e−2δ

v
d(η−) = 0

and (2.11) reads as

u =
−ve−2δ

v2 + e−2δ
z(η−), z ∈ D(GΛ) = Reg[0, a].

Consequently, the closed-loop operator reads as

Aoptx = −vz′ −K2z, z(θ) := x(θ) +
e−2δ

v2 + e−2δ
x(η−)e−

K2
v (θ−η)χ[η,a],

D(Aopt) =

{
x ∈ H : z ∈W1,2

0 [0, a], x(η+) =
v2

v2 + e−2δ
x(η−)

}
,
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whence (on θ-intervals [0, η], [η, a] there holds (Aoptx) (θ) = −vx′(θ)−K2x(θ))

x ∈ D(Aopt) =⇒〈x,Aoptx〉H + 〈Aoptx, x〉H = 〈x,Az〉H + 〈Az, x〉H =

= −vx2(η−)− vx2(a) + vx2(η+)− 2K2 ‖x‖2H =

= −vc
2(c2 + 2)

(1 + c2)2
x2(η−)− vx2(a)− 2K2 ‖x‖2H , c :=

1

v
e−δ,

and

x(θ) =


1
v

θ∫
0

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ if 0 ≤ θ < η,

© + 1
v

θ∫
η

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ if η ≤ θ ≤ a,
(7.7)

where

© :=
1

v(1 + c2)

η∫
0

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ,

solves the resolvent equation λx−Aoptx = X which, by the Lummer-Phillips theorem,
implies that Aopt generates an EXS semigroup on H. Moreover, since

x ∈ D(Aopt) =⇒ 〈x,Aoptx〉H + 〈Aoptx, x〉H ≤ −
vc2(c2 + 2)

(1 + c2)2
x2(η−)

then, by Lyapunov characterization of admissibility, the functional x 7−→ x(η−) is
admissible with respect to the semigroup generated by Aopt, which shows that the
control is optimal as it belongs to L2(0,∞; U).

Now (7.7) defines the resolvent of Aopt. Thus substituting t = θ−ξ
v in (7.7) and

applying the definition of Laplace transformation, we obtain

(Sopt(t)X) (θ) = e−K2t


X(θ − vt) if 0 ≤ t ≤ θ

v , 0 ≤ θ < η,

X(θ − vt) if 0 ≤ t ≤ θ−η
v , η ≤ θ < a,

1
1+c2X(θ − vt) if θ−η

v ≤ t ≤
θ
v , η ≤ θ ≤ a,

0 elsewhere,

from which we deduce that actually the semigroup {Sopt(t)}t≥0 decays to 0 in a
natural finite time a/v. The rate of decaying of {Sopt(t)}t≥0 is for θ ≥ η faster than
that of {S(t)}t≥0 given by (7.5).

Observe that

G(sI −A)−1d = −e
−2δ

v

1

v2

η∫
0

e−
s+K2
v (η−ξ)e−

K2
v (ξ−η)χ[η,a](ξ)dξ ≡ 0

and consequently Ξ(s) ≡ R1/2
− . This also confirms that our system is not approximate

controllable.
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7.3. OPERATOR-THEORETIC ATTEMPT TO FINDING THE OPTIMAL
COST OPERATOR

Since A can be represented as A = vRF −K2I, where RF , stands for the generator
of the semigroup of right-shifts on H then the semigroup generated by A reads as
(7.5). Hence the homogeneous part of the output, due to initial condition x0 ∈ H =
L2(0, a) is

yhom(t) =

{
e−K2tx0(γ − vt) if

(
a
v ≥

)
γ
v ≥ t

0 if γ
v < t

}
=

= (Ψx0) (t) for almost all t ≥ 0,

(7.8)

where Ψ ∈ L(H,L2(0,∞)) denotes the observability map.

Recall that the system transfer function is Ĝ(s) =
1

v
e−δe−s

δ
K2 , Ĝ ∈ H∞(C+),

whence the nonhomogeneous part of the output, due to a control u ∈ L2(0,∞), takes
the form

ynonhom(t) =


1
v e
−δu

(
t− δ

K2

)
if t ≥ δ

K2

0 if t < δ
K2

 for almost all t ≥ 0, (7.9)

and therefore the extended input-output map and its adjoint are

F =
1

v
e−δSR

(
δ

K2

)
, F∗ =

1

v
e−δSL

(
δ

K2

)
and F, F∗ ∈ L(L2(0,∞)), where {SR(t)}t≥0 and {SL(t)}t≥0 stand for the semigroups
of right-, respectively, left-shifts on L2(0,∞).

By (2.5), the optimal control (to be more precise its time-domain form) is

u = − (F∗F + I)
−1 F∗Ψx0. (7.10)

But

(F∗Ψx0) (t) =
1

v
e−δ

(
SL

(
δ

K2

)
Ψx0

)
(t) =

=
1

v
e−2δ

{
e−K2tx0(η − vt) if t ∈ [0, ηv ],

0 if t > η
v .

Since SL(t)SR(t) = I, then

R−1 = (F∗F + I)
−1

=
v2

v2 + e−2δ
I

and from (7.10) one gets

u(t) =

 −
ve−2δ

v2 + e−2δ
e−K2tx0(η − vt) for almost all t ∈ [0, ηv ],

0 for almost all t > η
v .

(7.11)
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From (2.6) we get the optimal cost operator

Hx0 =
[
Ψ∗Ψ−Ψ∗F (F∗F + I)

−1 F∗Ψ
]
x0 = HΨx0 −Ψ∗F (F∗F + I)

−1 F∗Ψx0.

Directly from definition of the adjoint operator we find the form of Ψ∗:

〈Ψ∗f, x0〉H =

a∫
0

(Ψ∗f) (θ)x0(θ)dθ = 〈f,Ψx0〉L2(0,∞) =

∞∫
0

f(t) (Ψx0(t)) dt =

=

γ/v∫
0

f(t)e−K2tx0(γ − vt)dt =
1

v

γ∫
0

f

(
γ − θ
v

)
e−

K2(γ−θ)
v x0(θ)dθ,

which results in

(Ψ∗f) (θ) =
1

v
f

(
γ − θ
v

)
e−

K2(γ−θ)
v χ[0,γ](θ), θ ∈ [0, a]. (7.12)

Since SR(t)SL(t) = χ[t,∞)I, then

−F (F∗F + I)
−1 F∗ = − e−2δ

v2 + e−2δ
χ[ δ

K2
,∞)I,

whence

−Ψ∗F (F∗F + I)
−1 F∗Ψx0 = − e−2δ

v(v2 + e−2δ)
e−

K2(γ−θ)
v χ[0,η](θ)x0(θ)

and finally

(Hx0) (θ) =
1

v
e−

2K2
v (γ−θ)χ[0,γ](θ)x0(θ)− e−2δ

v(v2 + e−2δ)
e−

2K2(γ−θ)
v χ[0,η](θ)x0(θ).

The last formula coincides with (7.6) except for one point θ = η what is not essential
as the state space is a Lebesgue-type space.

Now, we show that the feedback realization of the optimal control (7.11) is correct.
Indeed, an initial condition x0 and a control u, not necessarily optimal, give rise to
the full state x(t) = S(t)x0 + xnonhom(t), t ≥ 0. Since

x̂nonhom(s)(θ) = (A(sI −A)−1d)(θ)û(s) =
1

v
e−

s+K2
v (θ−η)1(θ − η)û(s) =

=
1

v
e−

K2
v (θ−η)χ[η,a](θ)e

− sv (θ−η)û(s),

then

xnonhom(t) =


1

v
e−

K2
v (θ−η)χ[η,a](θ)u

(
t− θ−η

v

)
if t ≥ θ−η

v ,

0 if t < θ−η
v .
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Thus if x0 ∈ Reg[0, a] then one has S(t)x0 ∈ Reg[0, a] for every t ≥ 0 and the optimal
feedback controller equation yields

u(t) = − ve−2δ

v2 + e−2δ
lim
θ→η−

x(t)(θ) = − ve−2δ

v2+e−2δ lim
θ→η−

(S(t)x0) (θ) =

= − ve−2δ

v2 + e−2δ

{
e−K2tx0(η − vt−) if 0 ≤ t < η

v ,

0 if t ≥ η
v ,

what agrees with (7.11).

8. SOLUTION OF THE LQ-PROBLEM FORMULATED IN [26]. THE MISO
CASE

Combining some ideas of Sections 7.2 and 7.3 one can solve the standard lq-problem in
the MISO case of two point controls (two aerators) located at θ = η1 > 0, θ = η2 > η1

and one output (one sensor measuring DO) located at θ = γ > η2 as depicted in
Figure 4; therefore still we have Y = R but now U = R2.

- θ

a

?

γ
??

η1 η2

0

Fig. 4. Configuration of measurement and controls in the MISO case

Consequently, the extended observability map Ψ is still given by (7.8) whilst the
input-output operator has components somewhat similar to the SISO case:

Fu =
[
F1 F2

] [ u1

u2

]
,

Fi = ciSR

(
δi
K2

)
, ci :=

1

v
e−δi , δi :=

K2(γ − ηi)
v

, i = 1, 2.

Observe that η1 < η2 if and only if δ1 > δ2, and

F∗y =

[
F∗1
F∗2

]
y, F∗i = ciSL

(
δi
K2

)
, i = 1, 2.
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Thanks to this

I ≤ R = I + F∗F =

[
I + F∗1F1 F∗1F2

F∗2F1 I + F∗2F2

]
=

=

 I + c21SL

(
δ1
K2

)
SR

(
δ1
K2

)
c1c2SL

(
δ1
K2

)
SR

(
δ2
K2

)
c1c2SL

(
δ2
K2

)
SR

(
δ1
K2

)
I + c22SL

(
δ2
K2

)
SR

(
δ2
K2

)
 =

=

 (1 + c21)I c1c2SL

(
δ1−δ2
K2

)
c1c2SR

(
δ1−δ2
K2

)
(1 + c22)I

 ,
because SL(t)SR(t) = I and

SL

(
δ1
K2

)
SR

(
δ2
K2

)
= SL

(
δ1−δ2
K2

)
SL

(
δ2
K2

)
SR

(
δ2
K2

)
= SL

(
δ1−δ2
K2

)
,

SL

(
δ2
K2

)
SR

(
δ1
K2

)
= SL

(
δ2
K2

)
SR

(
δ2
K2

)
SR

(
δ1−δ2
K2

)
= SR

(
δ1−δ2
K2

)
.

It is documented below that knowing explicit forms of Ψ, Ψ∗, F, F∗ and (I +F∗F)−1,
we can explicitly express the optimal control, the optimal cost operator, the optimal
controller and even {Sopt(t)}t≥0.

(I + F∗F)
−1

=

=

 1+c22
1+c21+c22

I − c1c2
1+c21+c22

SL

(
δ1−δ2
K2

)
− c1c2

1+c21+c22
SR

(
δ1−δ2
K2

)
1

1+c22
I +

c21c
2
2

(1+c21+c22)(1+c22)
SR

(
δ1−δ2
K2

)
SL

(
δ1−δ2
K2

)
 ,

whence

− (I + F∗F)
−1 F∗ =

 − c1
1+c21+c22

SL

(
δ1
K2

)
− c2

1+c22
SL

(
δ2
K2

)
+

c21c2
(1+c21+c22)(1+c22)

SR

(
δ1−δ2
K2

)
SL

(
δ1
K2

)


and consequently, with δ1−δ2
K2

= η2−η1

v , δ2
K2

< δ1
K2

< γ
v , we obtain the optimal control

u = − (I + F∗F)
−1 F∗Ψx0 =

[
u1(t)

u2(t)

]
=

=



 −
vc21

1+c21+c22
e−K2tx0(η1 − vt) if t ≤ η1

v

0 if t > η1

v


− vc22

1+c22
e−K2tx0(η2 − vt) if t < η2−η1

v

− vc22
1+c21+c22

e−K2tx0(η2 − vt) if t ∈
[
η2−η1

v , η2

v

]
0 if t > η2

v




.

(8.1)
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Continuing the construction of H, we find using SR(t)SL(t) = χ[t,∞)I,

− F (I + F∗F)
−1 F∗ =

=
[
c1SR

(
δ1
K2

)
c2SR

(
δ2
K2

) ]
×

×

 − c1
1+c21+c22

SL

(
δ1
K2

)
− c2

1+c22
SL

(
δ2
K2

)
+

c21c2
(1+c21+c22)(1+c22)

SR

(
δ1−δ2
K2

)
SL

(
δ1
K2

)
 =

= − c21
(1 + c21 + c22)(1 + c22)

χ[ δ1
K2

,∞
) − c22

1 + c22
χ[ δ2

K2
,∞
),

where the characteristic functions are taken with respect to time t ≥ 0. Thanks to
this

−
(
F (I + F∗F)

−1 F∗Ψx0

)
(t) =

= − c21
(1+c21+c22)(1+c22)

e−K2tx0(γ − vt)χ[ δ1
K2

, γv

](t)− c22
1+c22

e−K2tx0(γ − vt)χ[ δ2
K2

, γv

](t)
and, by (7.12),

−
(

Ψ∗F (I+F∗F)
−1 F∗Ψx0

)
(θ) = − c21

v(1 + c21 + c22)(1 + c22)
e−

2K2
v (γ−θ)x0(θ)χ[0,η1](θ)−

− c22
v(1 + c22)

e
−2K2
v (γ−θ)x0(θ)χ[0,η2](θ).

Adding the observability gramian Ψ∗Ψx0 = HΨx0, given by (7.1), we get

(Hx0) (θ) = (HΨx0) (θ)−
(

Ψ∗F (I + F∗F)
−1 F∗Ψx0

)
(θ) =

=
1

v
e
−2K2
v (γ−θ)


1

1+c21+c22
on [0, η1]

1
1+c22

on (η1, η2]

1 on (η2, γ]

0 on (γ, a]

x0(θ).

Passing to computations for G we observe that

Gz := −D∗HAz +N∗−Cz =

[
〈Az,−Hd1〉H − (Cd1)Cz
〈Az,−Hd2〉H − (Cd2)Cz

]
, z ∈ D(A),

because here

D =
[
d1 d2

]
, D∗ =

[
d∗1
d∗2

]
; di(θ) = −1

v
e−

K2
v (θ−ηi)χ[ηi,a](θ), θ ∈ [0, a], i = 1, 2.
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A slight modification of (7.3) (two components instead of one, each associated with
a separate control) shows that HΦ ∈ L(H), HΦ = H∗Φ ≥ 0,

(HΦx) (θ) :=
1

v

[
e

2K2
v (η1−θ)χ[η1,a](θ) + e

2K2
v (η2−θ)χ[η2,a](θ)

]
x(θ), x ∈ H,

solves the Lyapunov operator equation (HΦ is the controllability gramian)

〈A∗w,HΦw〉H + 〈w,HΦA∗w〉H =

=

η2∫
η1

e
2K2
v (η1−θ) d

dθ

[
w2(θ)

]
dθ − 2K2

v

η2∫
η1

e
2K2
v (η1−θ)w2(θ)dθ+

+

a∫
η2

[
e

2K2
v (η1−θ) + e

2K2
v (η2−θ)

] d

dθ

[
w2(θ)

]
dθ−

− 2K2

v

a∫
η1

[
e

2K2
v (η1−θ) + e

2K2
v (η2−θ)

]
w2(θ)dθ =

= −w2(η1)− w2(η2) = −‖D∗A∗w‖2U , w ∈ D(A∗),

whence D is admissible, though the system is not (infinite-time) approximately con-
trollable as kerHΦ 6= {0}.

Since

(Cdi)∗Cz =− ciz(γ), i = 1, 2,

〈Az,Hd1〉H =
c1

1 + c22

η2∫
η1

[
K2

v
z(θ) + z′(θ)

]
e
K2
v (θ−γ)dθ+

+ c1

γ∫
η2

[
K2

v
z(θ) + z′(θ)

]
e
K2
v (θ−γ)dθ =

=
vc1

1 + c22
[c2z(η2)− c1z(η1)] + c1 [z(γ)− vc2z(η2)] ,

〈Az,Hd2〉H =c2

γ∫
η2

[
K2

v
z(θ) + z′(θ)

]
e
K2
v (θ−γ)dθ = c2 [z(γ)− vc2z(η2)] ,

then

Gz =

 vc21
1+c22

z(η1) +
vc1c

3
2

1+c22
z(η2)

vc22 z(η2)

 , z ∈ D(A) = W1,2
0 (0, a). (8.2)

The last step is to determine the optimal feedback controller using (2.11). For that
we need

R− = I + (CD)
∗

(CD) =

[
1 + c21 c1c2

c1c2 1 + c22

]
≥ I



The lq-controller synthesis problem for systems in factor form 57

and an extension GΛ. It is enough to determine an extension onto Reg[0, a]. Let
z ∈ Reg[0, a]. Then, by (7.4), (8.2) and the Lebesgue dominated convergence theorem:

lim
s→∞,s∈R

sG(sI −A)−1z =

= lim
s→∞,s∈R

s


c21

1+c22

η1∫
0

e−
s+K2
v (η1−ξ)z(ξ)dξ +

c1c
3
2

1+c22

η2∫
0

e−
s+K2
v (η2−ξ)z(ξ)dξ

c22

η2∫
0

e−
s+K2
v (η2−ξ)z(ξ)dξ

 =

=

 vc21
1+c22

lim
s→∞,s∈R

I1(s) +
vc1c

3
2

1+c22
lim

s→∞,s∈R
I2(s)

vc22 lim
s→∞,s∈R

I2(s)

 =

=

 vc21
1+c22

z(η1−) +
vc1c

3
2

1+c22
z(η2−)

vc22z(η2−)

 := GΛz,

(8.3)

where

Ii(s) :=
s

s+K2

∞∫
0

e−tz
(
ηi − vt

s+K2

)
1
(
ηi(s+K2)

v − t
)

dt, i = 1, 2.

Since di ∈ Reg[0, a], i = 1, 2, then

GΛD =

 vc21
1+c22

d1(η1−) +
vc1c

3
2

1+c22
d1(η2−)

vc21
1+c22

d2(η1−) +
vc1c

3
2

1+c22
d2(η2−)

vc22d1(η2−) vc22d2(η2−)

 =

=

 − c21c
2
2

1+c22
0

−c1c2 0


and, by (2.11),

u = −(R− + GΛD)−1GΛx =

= −

 1+c21+c22
1+c22

c1c2

0 1 + c22

−1  vc21
1+c22

x(η1−) +
vc1c

3
2

1+c22
x(η2−)

vc22x(η2−)

 =

= − 1

1 + c21 + c22

 1 + c22 −c1c2

0
1+c21+c22

1+c22

 vc21
1+c22

x(η1−) +
vc1c

3
2

1+c22
x(η2−)

vc22x(η2−)

 =

= −

 vc21
1+c21+c22

x(η1−)

vc22
1+c22

x(η2−)

 .

(8.4)

This controller has astonishingly simple realization, depicted in Figure 5, in the
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- θ
a

?

γ
??

η1 η2

0
− vc21

1+c21+c22
− vc22

1+c22

6 6

Fig. 5. Optimal feedback controller realization in the MISO case

form of two separated loops of negative proportional feedback control, though the
gain coefficient of the first controller depends on η2, i.e., the position around which
the second loop operates.

To verify that our feedback controller is correctly constructed we determine the
full state

x(t)(θ) =

{
e−K2tx0(θ − vt) if a

v ≥
θ
v ≥ t

0 if θ
v < t

}
+

+


1

v
e−

K2
v (θ−η1)χ[η1,a](θ)u1

(
t− θ−η1

v

)
if t ≥ θ−η1

v

0 if t < θ−η1

v

+

+


1

v
e−

K2
v (θ−η2)χ[η2,a](θ)u2

(
t− θ−η2

v

)
if t ≥ θ−η2

v ,

0 if t < θ−η2

v .

This is because the first components represents (S(t)x0)(θ) while the remaining terms,
representing the non-homogeneous part of the state have the Laplace transform

(A(sI −A)−1D)(θ)û(s) =
1

v
e−

K2
v (θ−η1)χ[η1,a](θ)e

− sv (θ−η1)û1(s)+

+
1

v
e−

K2
v (θ−η2)χ[η2,a](θ)e

− sv (θ−η2)û2(s),

Thus if x0 ∈ Reg[0, a] then one has S(t)x0 ∈ Reg[0, a] for every t ≥ 0 and the optimal
feedback controller equation (8.4) yields

u =

 −
vc21

1+c21+c22

{
e−K2tx0(η1 − vt) if η1

v ≥ t
0 if η1

v < t

}
− vc22

1+c22
[Ê + Ë]

 .
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Ê :=

{
e−K2tx0(η2 − vt) if η2

v ≥ t,
0 if η2

v < t,

Ë :=

{
1
v e
−K2

v (η2−η1)u1

(
t− η2−η1

v

)
if t ≥ η2−η1

v ,

0 if t < η2−η1

v ,

where u1 denotes the first component of u, we already determined, whence

u1

(
t− η2 − η1

v

)
= − vc21

1 + c21 + c22

{
e
K2
v (η2−η1)e−K2t if η2

v ≥ t,
0 if η2

v < t,

and short calculations confirm (8.1).

Remark 8.1 (Limit passage from MISO to SISO case). Taking η1 → −∞, which
implies δ1 →∞, c1 → 0 and fixing η2 = η, δ2 = δ, c2 = c = 1

v e
−δ we get u1 = 0 and

u2 = u, where u is the optimal control or controller in the SISO case.

Let x ∈ Reg[0, a] and u be the optimal controller (8.4). A discussion of conditions
ensuring that z = x+Du ∈ D(A) (in particular, z = x+Du must be continuous on
[0,a]), leads to the following form of the closed-loop state operator:

Aoptx = −vz′ −K2z,

z(θ) := x(θ) +
c21

1 + c21 + c22
x(η1−)e−

K2
v (θ−η1)χ[η1,a]+

+
c22

1 + c22
x(η2−)e−

K2
v (θ−η2)χ[η2,a],

D(Aopt) =
{
x ∈ H : z ∈W1,2

0 [0, a], x(η1+) =
1 + c22

1 + c21 + c22
x(η1−),

x(η2+) =
1

1 + c22
x(η2−)

}
.

Hence (on θ-intervals [0, η1], [η1, η2], [η2, a] there holds (Aoptx) (θ) =
= −vx′(θ)− k2x(θ))

x ∈ D(Aopt) =⇒ 〈x,Aoptx〉H + 〈Aoptx, x〉H = 〈x,Az〉H + 〈Az, x〉H =

= −vx2(η1−)− vx2(η2−)− vx2(a) + vx2(η1+) + vx2(η2+)− 2K2 ‖x‖2H =

= −vc
2
2(c22+2)

(1+c22)2 x2(η1−)− vc21(c21+2c22+2)

(1+c21+c22)2 x2(η2−)− vx2(a)− 2K2 ‖x‖2H ,

and

x(θ) =


1

v

θ∫
0

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ if 0 ≤ θ < η1,

« if η1 ≤ θ < η2,

¨ if η2 ≤ θ ≤ a,

(8.5)
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where

« =
1 + c22

v(1 + c21 + c22)

η1∫
0

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ +
1

v

θ∫
η1

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ,

¨ =
1

v(1 + c21 + c22)

η1∫
0

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ +
1

v(1 + c22)

η2∫
η1

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ+

+
1

v

θ∫
η2

e−
(K2+λ)(θ−ξ)

v X(ξ)dξ,

solves the resolvent equation λx−Aoptx = X which, by the Lummer-Phillips theorem,
implies that Aopt generates an EXS semigroup on H. Moreover, since

x ∈ D(Aopt) =⇒

=⇒ 〈x,Aoptx〉H + 〈Aoptx, x〉H ≤ −
vc22(c22 + 2)

(1 + c22)2
x2(η1−)− vc21(c21 + 2c22 + 2)

(1 + c21 + c22)2
x2(η2−)

then, by Lyapunov characterization of admissibility, the functionals x 7−→ x(η1−),
x 7−→ x(η2−) are admissible with respect to the semigroup genarated by Aopt, which
confirms that the optimal control is in L2(0,∞; U).

Now (8.5) defines the resolvent of Aopt. Thus substituting t = θ−ξ
v in (8.5) and

applying the definition of Laplace transformation, we obtain

(Sopt(t)X) (θ) = e−K2t



X(θ − vt) if 0 ≤ t ≤ θ
v , 0 ≤ θ < η1,

1+c22
1+c21+c22

X(θ − vt) if θ−η1

v ≤ t ≤ θ
v , η1 ≤ θ < η2,

X(θ − vt) if 0 ≤ t ≤ θ−η1

v , η1 ≤ θ < η2,
1

(1+c22)(1+c21+c22)
X(θ − vt) if θ−η1

v ≤ t ≤ θ
v , η2 ≤ θ ≤ a,

1
1+c22

X(θ − vt) if θ−η2

v ≤ t ≤ θ−η1

v , η2 ≤ θ ≤ a,

X(θ − vt) if 0 ≤ t ≤ θ−η2

v , η2 ≤ θ ≤ a,
0 elsewhere,

from which we deduce that actually the semigroup {Sopt(t)}t≥0 decays to 0 is a natural
finite time a/v. The rate of decaying of {Sopt(t)}t≥0 is for θ ≥ η faster than that of
{S(t)}t≥0 given by (7.5).

Finally, we shall find GΛ using the method of spectral factorization and compare
it with (8.3). Here Ĝ(s) =

[
c1e
−s δ1K2 c2e

−s δ2K2

]
and therefore the Popov spectral

function reads as

Π(jω) = I + Ĝ∗(−jω)Ĝ(jω) =

 1 + c21 c1c2e
jω

δ1−δ2
K2

c1c2e
−jω δ1−δ2K2 1 + c22

 ≥ I.
The lower triangular matrix

H∞(C+,L(U)) 3 Ξ(s) =

[
a 0

be−s
δ1−δ2
K2 c

]
−→

[
a 0

0 c

]
:= D as s→∞, s ∈ R,
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is a spectral factor of Π(jω), i.e., ΞT (−jω)Ξ(−jω) = Π(jω) iff (a, b, c) solves the
system of equations:

a2 + b2 = 1 + c21, bc = c1c2, c2 = 1 + c22,

and moreover, then

Ξ−1(s) =
1

ac

[
c 0

−be−s
δ1−δ2
K2 a

]
∈ H∞(C+,L(U)).

Assuming GΛ =

[
G1

Λ

G2
Λ

]
we establish that here the realization equation (4.1) is

ĜG(s) = GΛA(sI −A)−1D =

=

[
G1

Λ

G2
Λ

] [
1
v e
− s+K2

v (θ−η1)χ[η1,a]
1
v e
− s+K2

v (θ−η2)χ[η2,a]

]
=

= Ξ∗(0) [Ξ(s)−D] =

[
a b

0 c

][
0 0

be−s
δ1−δ2
K2 0

]
=

 c21c
2
2

1+c22
e−s

δ1−δ2
K2 0

c1c2e
−s δ1−δ2K2 0

 .
For G1

Λ = m1x(η2−), G2
Λ = m2x(η2−) we obtain m1c1
vc2

e−s
δ1−δ2
K2 0

m2c1
vc2

e−s
δ1−δ2
K2 0

 =

 c21c
2
2

1+c22
e−s

δ1−δ2
K2 0

c1c2e
−s δ1−δ2K2 0

 ,
whence

m1 =
vc1c

3
2

1 + c22
, m2 = vc22, GΛ =

[
vc1c

3
2

1+c22
x(η2−)

vc22x(η2−)

]
,

which differs from (8.3). The difference is caused by the fact that the pair (A,D) is
not approximately controllable and therefore the realization equation returns GΛ only
partially. Nevertheless, the approximately controllable part of (8.3) coincides with GΛ

found via the method of spectral factorization.

9. CONCLUSIONS AND DISCUSSION

In this paper we have presented a solution of the optimal control/controller syn-
thesis to a rather general lq-problem with infinite-time horizon for the class of
infinite-dimensional systems in factor form, governed by (1.1). Complete solutions
of two exemplary standard lq-problems, having physical meaning, met in the liter-
ature, have been provided. The problem of calculating optimal control/controller in
the MIMO case of two measurements and two aerators has been addressed to and
solved by my Ph.D. student Elżbieta Żołopa.
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Basic assumptions where EXS of the semigroup generated by the state operator
A and (A1), (A2) and (A3). There still exist systems governed by (1.1) to which
our theory does not apply, e.g., to the electric RC-transmission line for which H =
L2(0,∞), U = R = Y, the state operator reads as

Ax = x′′, D(A) = {x ∈ H2(0, 1) : x′(1) = 0, x(0) = 0},

A = A∗ < 0, so A generates an EXS analytic semigroup on H; the observation
functional Cx = x(1) is admissible, so (A1) holds. It is proved in [9, Lemma 5.2,
p. 27] that the factor control vector D = d = 1 is not admissible, so (A2) is not
satisfied, though the system transfer function Ĝ(s) = CD − sC(sI −A)−1D = 1

cosh
√
s

is in H∞(C+) with
∥∥Ĝ∥∥

H∞(C+)
= 1.

Our solution of the lq-problem is given separately in time-domain and
frequency-domain domains, contrary to [24] where a mixture of these both aspects
has been used. Moreover, our method of derivation of the solution to lq-problems is
different and is close to Bellman’s dynamical programming whilst in [24] an idea of
Pontryagin’s maximum principle has been exploited – see Comments B.2 in Appendix
B for more details.

If the state operator A in (1.1) does not generate an EXS C0-semigroup then
one may look for an output static negative feedback exponentially stabilizing control
u = −Ky, dictated by an operator K ∈ L(Y,U) such that

ẋ = A[x+Du] = A[(x−DKCx) + (Du+DKCx)] =

= A(I −DKC)︸ ︷︷ ︸
:=Anew

[x+ (I −DKC)−1D︸ ︷︷ ︸
:=Dnew

(u+KCx)︸ ︷︷ ︸
:=unew

],

where now Anew generates an EXS C0-semigroup on H and the triple (Anew,Dnew, C)
satifies the assumptions (A1), (A2) and (A3). EXS implies ker(I −DKC) = {0}, so
I −DKC is (unboundedly) invertible. Next, if ker(I −CDK) = {0} then Dnew is well
defined, and

Dnewv = Dv +DK(I − CDK)−1CDv.

Since the state x and, consequently, the output y = Cx of the original and the trans-
formed system are the same, it is clear that the problem of minimizing J for the
original system reduces to the problem of minimizing the performance index

J(x0, unew) =

=

∞∫
0

[
y(t)

unew(t)−Ky(t)

]∗ [
Q N
N∗ R

] [
y(t)

unew(t)−Ky(t)

]
dt =

=

∞∫
0

[
y(t)

unew(t)

]∗ [
Q−NK −K∗N∗ +K∗RK N −K∗R

N∗ −RK R

] [
y(t)

unew(t)

]
dt

for the transformed system.
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The proposed approach can be illustrated by the following example. Let H =
L2(0, 1), Ax = −x′, D(A) = {x ∈ W1,2(0, 1) : x(0) = 2x(1)}. This operator is
ω = ln 2(> 0)-dissipative in the equivalent scalar product 〈x1, x2〉e = 〈x1,Mx2〉H
induced by the operator of multiplication (Mx) (θ) := e2θ ln 2x(θ), because

〈x,Ax〉e + 〈Ax, x〉e = 〈x,MAx〉H + 〈Ax,Mx〉H = 2 ln 2 ‖x‖2e , ∀x ∈ D(A).

Furthermore, R(λI −A) = H for Reλ > ln 2, and by the Lumer-Phillips theorem, A
generates a C0-semigroup on H. This semigroup is neither EXS nor uniformly bounded
as ln 2 is an eigenvalue of A, corresponding to its eigenvector eθ ln 2. Y = R = U,
so the observation operator C is a functional, i.e., C = c#, and here c#x = x(1),
D(c#) = {x ∈ H : x is continuous at θ = 1}; the factor control operator D is a
vector, i.e., D = d, and here d = 1 ∈ H.

Thus for K = 2 one has (I−DKC)x = x−Kdc#x = x−2 ·1x(1), (I−CDK)−1 =
(1−Kc#d)−1 = −1, dnew = −1 andAnew can equivalently be written asAnewx = −x′,
D(Anew) = W1,2

0 (0, 1). Now, the results of Section 7.1 apply with a = 1, v = 1,
K2 = 0, γ = 1 and η = 0 to show thatAnew generates an EXS semigroup of right-shifts
(7.5) (recall that this semigroup decays to zero in a finite time) and (A1), (A2), (A3)
hold, where the gramians are HΨ = HΦ = I and the system transfer functions is
Ĝ(s) = e−s. The standard lq-problem for the original system reduces to the lq-problem
with Q = 5, N = −2 and R = 1, whence the Popov spectral function is

Π(jω) = 1− 4 Re Ĝ(jω) + 5|Ĝ(jω)|2 = 6− 4 cosω ≥ 2.

Observe that, contrary to Section 7.1, the system gramians are coercive, whence in
particular, the pair (Anew, d) is approximately controllable, so the method of spectral
factorization is applicable. Take its spectral factor

Ξ(s) =

√
2 +
√

10

2
+

√
2−
√

10

2
e−s, s 7→ Ξ(s), s 7→ Ξ−1(s) ∈ H∞(C+).

Then V = Ξ(0) =
√

2, and (3.4) yields

Gx = (1−
√

5)x(1), ∀x ∈ D(Anew).

It is enough to consider its extension

GΛx = (1−
√

5)x(1) =⇒ FΛx =
3−
√

5

2
x(1), x ∈ D(c#),

and the optimal controller for the transformed system is u = FΛx (whence the optimal
controller for the original system is u = − 1+

√
5

2 x(1)), whilst the optimal closed-loop
system reads as

ẋ = Aoptx = Anew(x+ dnewFΛx) = −

[
x− 1

3−
√

5

2
x(1)

]′
= −x′,

D(Aopt) =

{
x ∈W1,2(0, 1) : x(0) =

3−
√

5

2
x(1)

}
,
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and again Aopt is ω = ln 3−
√

5
2 (< 0)-dissipative with respect to the equivalent scalar

product 〈x1, x2〉E = 〈x1,Mx2〉H, but now induced by the operator of multiplication
(Mx) (θ) := e2θ ln 3−

√
5

2 x(θ).
Part (I) of Theorem 2.3 can also be proved using the reciprocality approach. This

requires some modifications of the reasoning used in [11, Proof of Lemma 5.1, pp.
3074–3077].

A derivation of the closed-loop system Lyapunov/Riccati operator equation in the
general case of implicitly given optimal control remains an open problem.
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A. AUXILIARY THEOREMS

Theorem A.1 (Paley-Wiener). Let X be a Hilbert space. Then the map f 7−→ f̂
∣∣
C+ is

isometric isomorphism of L2(0,∞; X) onto H2(C+,X). Moreover, for f ∈ L2(0,∞; X),

f̂(α+ js) =
α

π

∞∫
−∞

(Ff)(r)

α2 + (s− r)2
dr.

As α↘ 0,
∥∥∥f̂(α+ js)− (Ff)(s)

∥∥∥→ 0 (s)-almost everywhere, and

∞∫
−∞

∥∥∥f̂(α+ js)− (Ff)(s)
∥∥∥2

X
ds→ 0.
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Here f̂ is the Laplace transform of f and Ff is its Fourier transform, whilst H2(C+,X)
stands for the space of holomorphic functions g : C+ 3 s 7−→ g(s) ∈ X such that

‖g‖2H2(C+,X) = sup
α>0

∞∫
−∞

∥∥∥f̂(α+ js)
∥∥∥2

X
ds <∞.

Theorem A.2 (Phragmén-Lindelöf). Let ϕ ∈ (0, π2 ], Σϕ := {z ∈ C : | arg z| < ϕ}
and let h : Σϕ −→ X be continuous on Σϕ and holomorphic in Σϕ. Set α := π

2ϕ .
Assume that for all ε > 0 there exists a constant Cε such that

‖h(z)‖ ≤ Cεeε|z|
α

(z ∈ Σϕ).

If
∥∥h(re±jϕ)

∥∥ ≤M for all r > 0, then ‖h(z)‖ ≤M for all z ∈ Σϕ.

Theorem A.3 (Devinatz-Shinbrot). Let H be any Hilbert space and P any closed,
linear subspace. If A ∈ L(H) and P is orthogonal projection on P, then TP (A) :=
PA|P is a Toeplitz operator. Let A be invertible. Then, TP (A) is invertible iff A can
be factored in the form A = A−A+, where A−, A+ are bounded invertible operators,
A− takes P⊥ onto itself, A+ takes P onto itself. Moreover, if TP (A) is invertible,
then [TP (A)]−1 = A−1

+ PA−1
−
∣∣
P
.

B. PROOFS OF THE MAIN RESULTS

Proof of Lemma 2.1. Part 1. Indeed, x is uniformly continuous because t 7−→ Rtu ∈
L2(0,∞; U) is uniformly continuous [10, p. 1394] and, by (A2), Φ ∈ L(L2(0,∞; U),H).
Now, if w ∈ D(A∗)

d

dt
〈w, x(t)〉H =

d

dt
〈w, S(t)x0〉H +

d

dt
〈w,AWRtu〉H =

=〈S∗(t)A∗w, x0〉H +

〈
A∗w, d

dt
WRtu

〉
H

=

=〈A∗w, S(t)x0〉H + 〈A∗w,AWRtu+Du(t)〉H,

where the last equality is met thanks to (A2) as then WRtu is a strong solution of
ẋ = Ax+Du with null initial condition [15, Theorem 2.9/(ii), p. 109].

Part 2. The first assertion is proved in [10, pp. 1394 - 1395]. For the second observe
that

〈z, x(t)〉H =〈z, S(t)x0〉H + 〈z,ΦRtu〉H = 〈z, S(t)x0〉H + 〈Φ∗z,Rtu〉L2(0,∞;U) =

=〈z, S(t)x0〉H +

t∫
0

〈(Φ∗z)(t− τ), u(τ)〉Udτ.
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Now by (A2) and EXS, we also have Φ∗ ∈ L(H,L1(0,∞; U)) – see [8, Appendix C,
Lemma C1 with c# replaced by D∗A∗ and S(t) replaced by S∗(t)], whence by standard
convolution result
‖〈z, x(·)〉H‖L2(0,∞) ≤‖〈z, S(·)x0〉H‖L2(0,∞) + ‖Φ∗z‖L1(0,∞;U) ‖u‖L2(0,∞;U) ≤

≤‖z‖H ‖x0‖H
M√
2α

+ ‖Φ∗‖L(H,L1(0,∞;U)) ‖z‖H ‖u‖L2(0,∞;U) .
(B.1)

Notice that substituting z = A∗w, w ∈ D(A∗) we get 〈w, x(·)〉H ∈W1,2(0,∞).

Comment B.1. It follows from the above proof that the weak solution (2.1) satisfies
d

dt

[
A−1x(t)

]
= x(t) +Du(t),

x(0) = x0

is a strong sense.

Proof of Lemma 2.2. If u ∈W1,2([0,∞); U) then WRtu is a classical solution of ẋ =
Ax+Du with null initial condition [7, Appendix A]; see also [11, Remark 2.1]. Hence,

x(t) = S(t)[x0 +Du(0)]− S(t)Du(0) +AWRtu =

= S(t)[x0 +Du(0)]− S(t)Du(0) +
d

dt
WRtu−Du(t) =

= S(t)[x0 +Du(0)]− S(t)Du(0) +WRtu̇+ S(t)Du(0)−Du(t) =

= S(t)[x0 +Du(0)] +WRtu̇−Du(t).

Now, by the admissibility and since x0 +Du(0) ∈ D(A),

x(t) +Du(t) = S(t)[x0 +Du(0)] +WRtu̇ ∈ D(A), ∀t ≥ 0

and
A[x(t) +Du(t)] = AS(t)[x0 +Du(0)] +AWRtu̇.

On comparison, by the admissibility and [15, Theorem 2.4/(ii), p. 107], WRtu̇ is a
classical solution of ż = Az +Du̇ with null initial condition, whence

AS(t)[x0 +Du(0)] +AWRtu̇ =
d

dt
{S(t)[x0 +Du(0)]}+

d

dt
WRtu̇−Du̇(t) =

=
d

dt
{S(t)[x0 +Du(0)] +WRtu̇−Du(t)} = ẋ(t)

and x satisfies (1.1) in classical sense.
Observe that for the classical solution x, the resolution x(t) = [x(t)+Du(t)]−Du(t)

implies

y(t) = Cx(t) = C[x(t) +Du(t)]− CDu(t) = (CA−1)A[x(t) +Du(t)]− CDu(t) =

= (CA−1)ẋ(t)− CDu(t) =

= (CA−1)
d

dt
{S(t)[x0 +Du(0)] +WRtu̇−Du(t)} − CDu(t) =

=
d

dt

{
(CA−1)S(t)[x0 +Du(0)] + (CA−1)WRtu̇− (CA−1)Du(t)

}
− CDu(t),
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but, by (A2) and (A1),

(CA−1)WRtu̇ = (CA−1)

[
d

dt
WRtu− S(t)Du(0)

]
=

=
d

dt
(CA−1)WRtu− (CA−1)S(t)Du(0) =

=
t∫

0

d

d(t− τ)
{(Z[Du(τ)]) (t− τ)} dτ + (CA−1)Du(t)− (CA−1)S(t)Du(0)

giving

y(t) =
d

dt

CA−1S(t)x0 +

t∫
0

(Ψ[Du(τ)]) (t− τ)dτ

− CDu(t),

from which (2.3) follows by definition of Ψ.

The Laplace transform of t 7−→ d

dt
(CA−1)WRtu̇ equals

s2(CA−1)(sI −A)−1Dû(s)− s(CA−1)(sI −A)−1Du(0),

whence

x0 = 0 =⇒ ŷ(s) =
[
s2(CA−1)(sI −A)−1D − s(CA−1)D − CD

]
û(s) = Ĝ(s)û(s).

Now, if (A3) holds too, then (2.3) extends to (2.4).

Proof of Theorem 2.3. Since (A1), (A2) and (A3) hold then for every x0 ∈ H and
u ∈ L2(0,∞; U) the output y is in L2(0,∞; Y) and is given by (2.4). Hence the
performance index J is a continuous functional of (x0, u) ∈ H×L2(0,∞; U) and reads
as

J(x0, u) = 〈u, (R+N∗F + F∗QF + F∗N)u〉L2(0,∞;U) + 〈x0,Ψ
∗QΨx0〉H+

+〈u, 2(F∗Q+N∗)Ψx0〉L2(0,∞;U).
(B.2)

Since R is coercive then R−1 ∈ L(L2(0,∞; U)) and the optimal control exists, it is
unique and equals (2.5). On this control J achieves its minimal value (2.6).

Proof of (I). By Lemma 2.2, for every u ∈W1,2([0,∞); U) and x0 ∈ H such that
x0 + Du(0) ∈ D(A), the first equation in (1.1) has a unique classical solution (2.1),
and the quadratic form V(x) := 〈x,Hx〉H, dictated by an operator H = H∗ ∈ L(H),
can be differentiated along the solution of (1.1) giving

V̇(x, u) =〈ẋ,Hx〉H + 〈x,Hẋ〉H = 〈A(x+Du),Hx〉H + 〈x,HA(x+Du)〉H =

=〈A(x+Du),H(x+Du)〉H − 〈A(x+Du),HDu〉H+

+ 〈(x+Du),HA(x+Du)〉H − 〈Du,HA(x+Du)〉H.
(B.3)
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Recall the output representation (2.2). To take into account the performance index,
we add and subtract its integrand in the RHS of (B.3), which yields

V̇(x, u) = 〈A(x+Du),H(x+Du)〉H − 〈A(x+Du),HDu〉H+

+ 〈(x+Du),HA(x+Du)〉H − 〈Du,HA(x+Du)〉H+

+ 〈QCx, Cx〉Y + 〈Cx,Nu〉Y + 〈Nu, Cx〉Y + 〈u,Ru〉U−

−
[
y
u

]∗ [
Q N
N∗ R

] [
y
u

]
=

= 〈A(x+Du),H(x+Du)〉H + 〈(x+Du),HA(x+Du)〉H+

+ 〈QC(x+Du), C(x+Du)〉Y−
− 〈A(x+Du),HDu〉H − 〈HDu,A(x+Du)〉H−
− 〈QC(x+Du), CDu〉Y − 〈QCDu, C(x+Du)〉Y+

+ 〈Nu, C(x+Du)〉Y + 〈C(x+Du), Nu〉Y+

+ 〈QCDu, CDu〉Y + 〈u,Ru〉U − 〈CDu,Nu〉Y − 〈Nu, CDu〉Y−

−
[
y
u

]∗ [
Q N
N∗ R

] [
y
u

]
.

Assume that R− is coercive, whence invertible. Factorize R− as R− = V ∗V
(V, V −1 ∈ L(U)). Such a factorization exists and is determined up to a unitary opera-
tor: V = UR

1
2
−, where U is a unitary operator and RR

1
2
− stands for the (unique) square

root of R−. Now, if H solves the Riccati operator equation (2.7) we can represent
V̇(x, u) as

V̇(x, u) =
∥∥V −∗G(x+Du) + V u

∥∥2

U
−
[
y
u

]∗ [
Q N
N∗ R

] [
y
u

]
.

Consequently,

V[x(t)]− V(x0) =

=
t∫

0

‖V −∗G [x(τ) +Du(τ)] + V u(τ)‖2U dτ −
t∫

0

[
y(τ)
u(τ)

]∗ [
Q N
N∗ R

] [
y(τ)
u(τ)

]
dτ .

By Lemma 2.1, we have x ∈ BUC0(0,∞; H), whence limt→∞ V[x(t)] = 0 and

0 ≤
∞∫

0

∥∥V {R−1
− G [x(t) +Du(t)] + u(t)

}∥∥2

U
dt = J(x0, u)− V(x0) ≤

≤γ(‖u‖2L2(0,∞;U) + ‖x0‖2H), ∀(x0, u) ∈ D(A)×W1,2
0 ([0,∞); U),

where the existence of a positive constant γ follows from (B.2) and definition of V.
Since (x0, u) ∈ D(A) ×W1,2

0 ([0,∞); U) is a dense subspace of H × L2(0,∞; U) this,
in particular, implies that the mapping

H× L2(0,∞; U) 3 (x0, u) 7−→ G [x(t) +Du(t)] = GA−1ẋ(t) ∈ L2(0,∞; U)
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is densely defined and bounded; here GA−1 = N∗−CA−1 − D∗H. The proof of
Lemma 2.2 suggests that its closure is given by d

dt

[
GA−1x(t)

]
, what can be confirmed

using the Laplace transformation

G [x̂(s) +Dû(s)] = G
[
(sI −A)−1x0 +A(sI −A)−1Dû(s) +Dû(s)

]
=

= G
[
(sI −A)−1x0 + s(sI −A)−1Dû(s)

]
=

= G(sI −A)−1x0 + sG(sI −A)−1Dû(s) =

= sGA−1x̂(s)− GA−1x0.

If ûn −→ û in H2(C+; U) andMûn −→ v̂ in H2(C+; U) as n → ∞, whereM is the
operator of multiplication of f̂ by sG(sI−A)−1D, i.e., (Mf̂)(s) := sG(sI−A)−1Df̂(s),
then ûn(s) −→ û(s) and (Mûn) (s) −→ v̂(s) in U as n → ∞ thanks to the inequal-
ity ‖f̂(s)‖U ≤ 1√

2 Re s
‖f̂‖H2(C+;U), which holds for s ∈ C+. Hence (Mûn) (s) −→

(Mû) (s) in U because sG(sI −A)−1D ∈ L(U) and thusMû = v̂, which means that
M is closed. By the closed-graph theoremM∈ L(H2(C+; U)). Applying Lemma D.1
of Appendix D we get s 7−→ sG(sI − A)−1D ∈ H∞(C+,L(U)). Somewhat similar
arguments, applied to the operator x0 7−→ G(sI − A)−1x0, prove that it belongs to
L(H,H2(C+,U)).

It is straightforward to check that the Laplace transform of t 7−→ d

dt

[
GA−1x(t)

]
is s 7−→ G(sI −A)−1x0 + sG(sI −A)−1Dû(s).

Now

0 ≤
∞∫
0

∥∥∥∥V {R−1
−

d

dt

[
GA−1x(t)

]
+ u(t)

}∥∥∥∥2

U

dt = J(x0, u)− V(x0),

∀(x0, u) ∈ H× L2(0,∞; U).

Suppose that the control u given by (2.9), where x satisfies (2.10), is in L2(0,∞; U).
Then

J(x0, u) = V(x0) = 〈x0,Hx0〉H ≤ J(x0, uopt) = 〈x0,Hoptx0〉H,

where uopt, Hopt are, respectively, the optimal control given by (2.5), and the op-
timal cost operator, given by (2.6). By the uniqueness of optimal control we then
have u = uopt and, consequently H = Hopt (in particular, this means that the op-
timal cost operator (2.6) is the maximal solution to the Riccati operator equation
(2.7); others solution of (2.7) are merely lower bounds of the performance index),
d
dt

[
GoptA−1x(t)

]
+R−uopt(t) = 0 or, equivalently,[

R− + sGopt(sI −A)−1D
]
ûopt(s) = −Gopt(sI −A)−1x0.

It remains to examine the closed-loop system. By Lemma 2.1, the natural candidate
for Sopt(t) operator is

Sopt(t)x0 = [S(t) + ΦRtM]x0, {Sopt(t)}t≥0 ⊂ L(H), Sopt(0) = I,
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and t 7−→ Sopt(t)x0 is in BUC0([0,∞),H). To show that {Sopt(t)}t≥0 is a
C0-semigroup we have to verify the semigroup property. For that we have

Sopt(t+ τ)x0 = S(t+ τ)x0 +A
t+τ∫
0

S(t+ τ − r)D(Mx0)(r)dr =

= S(τ)

S(t)x0 +A
t∫

0

S(t− r)D(Mx0)(r)dr

+

+A
τ∫

0

S(t− ξ)D(Mx0)(t+ ξ)dξ =

= S(τ)[Sopt(t)x0] +A
τ∫

0

S(t− ξ)D (SLU
(t)Mx0) (ξ)dξ,

where {SLU
(t)}t≥0 stands for the semigroup of left-shifts generated by LU. Eliminating

S(τ) from the first component we obtain

Sopt(t+ τ)x0 = Sopt(τ)[Sopt(t)x0]− ΦRτMSopt(t)x0 + ΦRτSLU(t)Mx0,

whence the semigroup property is met if M[Sopt(t)x0] = SLU(t)Mx0, i.e., when the
optimal control for initial state Sopt(t)x0 coincides with the left translation by t of
the optimal control for initial state x0. For the latter observe that:

J(x0,Mx0 ♦
t
v) = J(x0,Mx0)− J(Sopt(t)x0, SLU (t)Mx0) + J(Sopt(t)x0, v),

where the concatenation of functions at t ≥ 0 is defined as

(f ♦
t
g)(τ) :=

{
f(τ) if 0 ≤ τ < t,

g(τ − t) if τ ≥ t.

The state at t equals Sopt(t)x0, while the control on [t,∞) equals SRU
(t)ν. Hence,

shifting the initial time to 0, we conclude that a part of the value of J(x0,Mx0 ♦
t
v)

due to integration on [t,∞) is J(Sopt(t)x0, v). On the other side, a part of the value
J(x0,Mx0 ♦

t
v) due to integration on [0, t) equals J(x0,Mx0) minus a part of the value

of J(x0,Mx0) due to integration on [t,∞). Shifting, in the last component, the initial
time to 0 we find that it equals J(Sopt(t)x0, SLU (t)Mx0). Minimizing with respect to
v we get J(Sopt(t)x0, SLU (t)Mx0) = J(Sopt(t)x0,MSopt(t)x0), from which we get the
desired identity M[Sopt(t)x0] = SLU

(t)Mx0.
For u = Mx0 we have x(t) = Sopt(t)x0 in Lemma 2.1, whence using (B.1) we get

‖〈z, Sopt(·)x0〉H‖L2(0,∞)≤‖z‖H ‖x0‖H
[ M√

2α
+‖Φ∗‖L(H,L1(0,∞;U)) ‖M‖L(H,L2(0,∞;U))

]
,

from which EXS follows by the result of [23, with p = 2].



The lq-controller synthesis problem for systems in factor form 71

The identity xopt(t) = Sopt(t)x0 follows from comparing their Laplace transforms.
Indeed, we the aid of (2.10), we get sA−1x̂opt(s) − A−1x0 = x̂opt(s) + Dûopt(s),
whence

x̂opt(s) = (sA−1 − I)−1A−1x0 + (sA−1 − I)−1Dûopt(s) =

= (sI −A)−1x0 +A(sI −A)−1Dûopt(s).

But, directly by the definition of Sopt(t)x0, the last expression is readily seen to be
the Laplace transform of [S(t) + ΦRtM]x0. We also have

x̂opt(s) =
[
s(A−1 +DR−1

− GoptA−1)− I
]−1

(A−1 +DR−1
− GoptA−1)x0 =

=
[
sI − (A−1 +DR−1

− GoptA−1)−1
]−1

x0.

This is the resolvent of a closed densely defined state operator of the closed-loop
system:

Aoptx := (A−1 +DR−1
− GoptA−1)−1x,

D(Aopt) = {x ∈ H : ∃!z ∈ D(A), z solves the equation z +DR−1
− Goptz = x}.

Proof of (II). It is enough to observe that if for some G, tied with H by (2.8), the
operator-valued function s 7−→ [R− + sG(sI − A)−1D]−1 belongs to H∞(C+,L(U))
then the equation [

R− + sG(sI −A)−1D
]
û(s) = −G(sI −A)−1x0

has a unique solution û ∈ H2(C+,U), so û = ûopt thanks to (I).

Comment B.2. The fact M[Sopt(t)x0] = SLU
(t)Mx0 is closely related to the prin-

ciple of optimality, accordingly to which an optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from the first decision.
Furthermore, formally the Hamilton-Jacobi-Bellman equation for our lq-problem is

0 = min
u

{
V̇(x, u) +

[
y
u

]∗ [
Q N
N∗ R

] [
y
u

]}
= min

u

∥∥V −∗G(x+Du) + V u
∥∥2

U
,

where the second equality holds when H solves to the Riccati operator equation (2.7)
and G is given by (2.8). We have established that the optimal cost operator induces V
which is a maximal semiconcave solution to this Hamilton-Jacobi-Bellman equation.

In [24] an idea of Pontryagin’s maximum principle has been employed to get
Riccati operator equation and to characterize the optimal controller.

C. PROOFS OF MAIN RESULTS OF SECTION 3

Proof of Theorem 3.1. Part (I). If Π(jω) ≥ εI for all ω ∈ R and some ε > 0 then J
is being minimized by û ∈ L2(jR,U) satisfying

Πû = −
[
Ĝ∗Q+N∗

]
Ψ̂x0 = −

[
QĜ+N

]∗
Ψ̂x0 = F [(F∗Q+N∗)Ψx0] , (C.1)
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where F stands for the Fourier transform. Observe that

〈u,Ru〉L2(0,∞;U) = 〈Fu,FRu〉L2(jR;U) =

= 〈Fu,RFu〉L2(jR;U) + 〈NFu, ĜFu〉L2(jR;Y) + 〈ĜFu,NFu〉L2(jR;Y)+

+ 〈ĜFu,QĜFu〉L2(jR;Y) = 〈Fu,ΠFu〉L2(jR;U) ≥ ε ‖Fu‖
2
L2(jR;U) =

= ε ‖û‖2H2(C+;U) = ε ‖u‖2L2(0,∞;U) ,

whence R is coercive too. The converse may not hold because the Fourier transform
F is a unitary isomorphism between L2(R; U) and L2(jR; U), while controls are in
L2(0,∞; U). Nevertheless, the existence of L2(jR,U)-minimizer implies the existence
of L2(0,∞; U)-minimizer, or equivalently, H2(C+,U)-minimizer and all these mini-
mizers are equal.

We need to express H2(C+,U)-minimizer rather than L2(jR,U)-minimizer. For
that theWiener - Hopf projection method is adequate. From [5, Lemma 2, p. 475 with:
H = L2(jR,U), P = H2(C+,U), P - the projection from H onto its closed subspace
P, (Af)(jω) := Π(jω)f(jω) (here we employ the facts that A is bounded and has a
strongly positive real part) and with the Toeplitz operator TP (A) := PA|P], we know
that TP+

(Π) := P+Π|H2(C+,U), where P+ stands for the projection from L2(jR; U)

onto its closed subspace H2(C+; U), is invertible. Hence (C.1) has a unique solution
û in P = H2(C+,U).

This H2(C+,U)-minimizer is more precisely characterized by [5, Theorem 5,
p. 478 with H = L2(jR,U), P = H2(C+,U), Q = P⊥ = H2(C−,U), (Af)(jω) :=
Π(jω)f(jω) (here we employ, in addition, the facts that A is invertible and A ≥ 0)
and because TP (A) = PA|P = TP+

(Π) := P+Π|H2(C+,U) is invertible] (this theo-
rem is recalled in Appendix A). Under these hypotheses, there exists a bounded and
invertible A+ (on L2(jR,U)) which takes P = H2(C+,U) onto itself such that

A = A∗+A+

(a factor A− appearing in the basic statement can be taken to be A− = A∗+, i.e., its
H = L2(jR,U)-adjoint operator (as justified by the remark on p. 482, first line from
the top)), and

[TP (A)]−1f = A−1
+ PA−∗+ f, f ∈ P = H2(C+,U). (C.2)

Since A+ maps P = H2(C+,U) onto itself, the boudedness of A+ on H = L2(jR,U)
implies the boundedness of its restriction A+|P to P = H2(C+,U). Furthermore,
A+|P is injective because A+ is injective as a boundedly invertible operator on H =

L2(jR,U). Thus A+|P is boundedly invertible on P = H2(C+,U).
Let S be the canonical shift on P = H2(C+,U) [16, p. 95, where the Hardy classes

have been defined for the upper complex half-plane rather than C+ – so one has to
replace z in (5-4) by js],

(Sf)(s) :=
s− 1

s+ 1
f(s), f ∈ H2(C+,U); (S∗g)(s) = g(s)+2

g(s)− g(1)

s− 1
, g ∈ H2(C+,U),
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then A+|P clearly commutes with S, and in accordance with [16, Definition 1.6 (i),
p. 6] A+|P is S-analytic. Recall that the canonical shift S is, modulo the conformal
mapping z = s−1

s+1 of C+ onto the unit disc D, multiplication by z of the Taylor
transform (expansion), which corresponds, in terms of the Taylor transform, to the
(discrete-time) right-shift on `2(Z+), and that an operator Z ∈ L(H) is S-analytic if
SZ = ZS.

Now, by [16, Theorem C (i), p. 96 with Ω = C+, C = U], the operator A+|P
must be of the form (A+|P f)(s) = Ξ(s)f(s), with Ξ ∈ H∞(C+,L(U)). By sim-
ilar arguments applied to (A+|P)−1, we obtain ((A+|P)−1f)(s) = Ξ−1(s)f(s),
with Ξ−1 ∈ H∞(C+,L(U)). Consequently (A+f)(jω) = Ξ(jω)f(jω), (A−1

+ f)(jω) =
Ξ−1(jω)f(jω) and we get the factorization Π(jω) = Ξ∗(jω)Ξ(jω), whilst the formula
for [TP (A)]−1 yields the H2(C+,U)-minimizer (3.3). Furthermore, in accordance with
[16, Definition 1.6 (iii), p. 6], the operators A+|P, (A+|P)−1 are S-outer. Recall that
an operator Z ∈ L(H) is S-outer if Z is S-analytic and ZH reduces S, i.e., ZH is an
invariant subspace for both S and S∗. Here the range of Z = A+|P ∈ L(H2(C+,U))

clearly equals P = H2(C+,U).
Suppose that there exists a spectral factorization

A = A∗+A+ = C∗+C+,

where (C+|P f)(s) = ΣC(s)f(s), with ΣC , Σ−1
C ∈ H∞(C+,L(U)), whence C+|P is

S-outer. Now, by [16, Corollary, p. 52] there exists an operator B ∈ L(H2(C+,U)) such
that A+|P = B C+|P which is an S-constant inner operator with initial and final
spaces P = H2(C+,U). From [16, Theorem C (iv), p. 96] we conclude that B is an
operator of multiplication by an independent of s operator which is a partial isometry
with initial and final spaces P = H2(C+,U). Actually we have more, since A+|P,
C+|P are both boundedly invertible – the operator B is a bounded and invertible
partial isometry, so BB∗B = B, whence BB∗ = I = B∗B and B is a constant unitary
operator. The whole discussion above shows that the spectral factorization Π(jω) =
Ξ∗(jω)Ξ(jω) associated with Ξ such that Ξ, Ξ−1 ∈ H∞(C+,L(U)) is determined
uniquely up to a s-independent unitary operator multiplier which belongs to L(U).

Part (II). Since Ĝ(0) = −CD, then

Π(j0) = R+ 2 Re[N∗Ĝ(0)] + [Ĝ(0)]∗QĜ(0) = R−

and R− is coercive, whence the Riccati operator equation (2.7) is meaningful.
Complexifying H, Y, U and substituting z := jω(jωI−A)−1Du ∈ D(A) into (2.7)

we get

∥∥V −∗Gjω(jωI −A)−1Du
∥∥2

U
= 〈jωA(jωI −A)−1Du, jωH(jωI −A)−1Du〉H+

+ 〈jω(jωI −A)−1Du, jωHA(jωI −A)−1Du〉H+

+ 〈QCjω(jωI −A)−1Du, Cjω(jωI −A)−1Du〉Y =
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= ω2

[
〈 A(jωI −A)−1Du︸ ︷︷ ︸
=jω(jωI−A)−1Du−Du

,H(jωI −A)−1Du〉H+

+ 〈(jωI −A)−1Du,H A(jωI −A)−1Du︸ ︷︷ ︸
=jω(jωI−A)−1Du−Du

〉H

]
+

+ 〈Q[Ĝ(jω) + CD]u, [Ĝ(jω) + CD]u〉Y =

= ω2
[
〈u,−D∗H(jωI −A)−1Du〉H + 〈(jωI −A)−1Du,−HDu〉H

]
+

+ 〈QĜ(jω)u, Ĝ(jω)u〉Y + 〈QCDu, Ĝ(jω)u〉Y + 〈QĜ(jω)u, CDu〉Y + 〈QCDu, CDu〉Y.
Next, using again the notation 2 ReZ := Z + Z∗, Z ∈ L(U), the last equation reads
as [

V −∗Gjω(jωI −A)−1D
]∗ [

V −∗Gjω(jωI −A)−1D
]
− [Ĝ(jω)]∗QĜ(jω)−

−2 Re[(CD)∗QĜ(jω)]− (CD)∗Q(CD) = ω2 2 Re
[
−D∗H(jωI −A)−1D

]
.

(C.3)

By (2.8), still with z := jω(jωI −A)−1Du ∈ D(A), we have

−Gjω(jωI −A)−1Du+N∗−Cjω(jωI −A)−1Du = D∗HAjω(jωI −A)−1Du =

= D∗H
{
jω
[
jω(jωI −A)−1 − I

]}
Du = −ω2D∗H(jωI −A)−1Du− jωD∗HDu,

whence

ω2 2 Re
[
−D∗H(jωI −A)−1D

]
=

= 2 Re
[
N∗−Cjω(jωI −A)−1D

]
− 2 Re

[
Gjω(jωI −A)−1D

]
=

= 2 Re
[
N∗−Ĝ(jω)

]
+ 2 Re

[
N∗−(CD)

]
− 2 Re

[
Gjω(jωI −A)−1D

]
=

= 2 Re
[
N∗Ĝ(jω)

]
− 2 Re

[
(CD)∗QĜ(jω)

]
+ 2 Re [N∗(CD)]− 2(CD)∗Q(CD)−

−2 Re
[
Gjω(jωI −A)−1D

]
.

(C.4)
(C.3) and (C.4) yield[

V −∗Gjω(jωI −A)−1D
]∗ [

V −∗Gjω(jωI −A)−1D
]
− [Ĝ(jω)]∗QĜ(jω)−

−2 Re[(CD)∗QĜ(jω)]− (CD)∗Q(CD) = 2 Re[N∗Ĝ(jω)]− 2 Re[(CD)∗QĜ(jω)]+

+2 Re[N∗(CD)]− 2(CD)∗Q(CD)− 2 Re[Gjω(jωI −A)−1D],

or equivalently,[
V −∗Gjω(jωI −A)−1D

]∗ [
V −∗Gjω(jωI −A)−1D

]
+ 2 Re

[
Gjω(jωI −A)−1D

]
=

= Ĝ∗(jω)QĜ(jω) + 2 Re[N∗Ĝ(jω)] + 2 Re[N∗(CD)]− (CD)∗Q(CD).

Adding R− to both sides and applying its definition we get[
V + V −∗Gjω(jωI −A)−1D

]∗ [
V + V −∗Gjω(jωI −A)−1D

]
=

= Ĝ∗(jω)QĜ(jω) + 2 Re[N∗Ĝ(jω)] +R,
(C.5)
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This means that Π(jω) is nonnegative and has the spectral factorization (3.2), (3.4).
By (3.2), ‖Π(jω)‖L(U) = ‖Ξ∗(jω)Ξ(jω)‖L(U) = ‖Ξ(jω)‖2L(U), whence Ξ is bounded

on the imaginary axis, analytic on C+, where it grows as a trinomial in |s|,

‖Ξ(s)‖L(U) ≤ ‖V ‖+
∥∥V −1

∥∥∥∥Gs(sI −A)−1D
∥∥ ≤

≤ ‖V ‖+
∥∥V −1

∥∥∥∥GA−1
∥∥∥∥sA(sI −A)−1

∥∥ ‖D‖ ≤
≤ ‖V ‖+

∥∥V −1
∥∥∥∥GA−1

∥∥ (|s|2 ∥∥(sI −A)−1
∥∥+ |s|

)
‖D‖ ≤

≤︸︷︷︸
(1.2)

‖V ‖+
∥∥V −1

∥∥∥∥GA−1
∥∥(|s|2 M

α + |s|
)
‖D‖ .

Now, one can apply a vector version of the Phragmén-Lindelöf theorem [1, Theorem
3.9.8, p. 179 with a Banach space X = L(U) and an opening angle ϕ = π/2] (recalled
in Appendix A) to conclude that s 7−→ Ξ(s) ∈ H∞(C+,L(U)).

Inserting (2.8) into (2.7) we get the Lyapunov operator equation

〈Az,Hz〉H + 〈z,HAz〉H = −〈QCz, Cz〉Y +
∥∥V −∗Gz∥∥2

U
, z ∈ D(A).

Substituting z = S(t)x0, x0 ∈ D(A), we obtain

d

dt
〈S(t)x0,HS(t)x0〉H = −〈QCS(t)x0, CS(t)x0〉Y +

∥∥V −∗GS(t)x0

∥∥2

U
.

Integrating both sides from 0 to t and employing EXS we can pass to the limit t→∞,
which yields

〈x0,Hx0〉H +

∞∫
0

〈QCS(t)x0, CS(t)x0〉Ydt =

∞∫
0

∥∥V −∗GS(t)x0

∥∥2

U
dt.

Due to H ∈ L(H) and (A1), the validity of this formula extends to all x0 ∈ H giving,
by the Paley-Wiener theorem, s 7−→ V −∗G(sI −A)−1x0 ∈ H2(C+; U).

Let u be a solution giving rise to classical solution x satisfying the implicit feedback
control formula (2.9). Then

R−u(t) = −G[x(t) +Du(t)] = −[−D∗H+N∗−(CA)−1]A[x(t) +Du(t)] =

= −[−D∗H+N∗−(CA)−1]ẋ(t).

Since

ˆ̇x(s) = sx̂(s)− x0 = s(sI −A)−1x0 − x0 + sA(sI −A)−1Dû(s) =

= A(sI −A)−1x0 + sA(sI −A)−1Dû(s),

then [
R− + sG(sI −A)−1D

]
û(s) = V ∗Ξ(s)û(s) = −G(sI −A)−1x0.

Now, if s 7−→ Ξ−1(s) ∈ H∞(C+,L(U)) then, by admissibility of V −∗G one obtains
û ∈ H2(C+,U) or, equivalently, u ∈ L2(0,∞; U) and, by Theorem 2.3, u is optimal.
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In accordance with the terminology used in [24], this spectral factor is regular if
the limit

lim
s→∞,s∈R

Ξ(s)u = Du, D ∈ L(U),

exists and D−1 ∈ L(U). In the context of (3.4) this means that GΛ is a restriction of
the Yosida approximation of G to, at least, R(D),

Du := lim
s→∞,s∈R

Ξ(s)u = V u+ V −∗GΛDu = V −∗(R− + GΛD)u.

Hence R−+GΛD is boundedly invertible iff the limit operator D is boundedly invert-
ible and then (2.11) reads as

u = −D−1V −∗GΛx for x ∈ D(GΛ). (C.6)

Introducing ĜG(s) := sG(sI −A)−1D − GΛD = GΛA(sI −A)−1D, we also have[
R− + GΛD + ĜG(jω)

]∗
R−1
−

[
R− + GΛD + ĜG(jω)

]
= Π(jω)

and
Ξ(s) = V + V −∗

[
GΛD + ĜG(s)

]
= V −∗

[
R− + GΛD + ĜG(s)

]
.

Comment C.1. An important item of the proof above was to show that the feedback
control (2.11) gives rise, in the time-domain, to a control u ∈ L2(0,∞; U), which
ensures its optimality. For that, we can also adapt the arguments from [11, Proof of
Theorem 5.1]. The Laplace transform of the control given by (2.11) is

û = −(R− + GΛD)−1GΛ(sI −Aopt)
−1x0,

and we wish to show that û ∈ H2(C+; U). Premultiplying the resolvent equation for
the closed-loop state operator Aopt:

sx−Aoptx = sx−A
[
x−D (R− + GΛD)

−1 GΛx
]

= x0 ∈ H, s ∈ C+

by GΛ(sI −A)−1 one obtains[
I + GΛA(sI −A)−1D (R− + GΛD)

−1
]
GΛ(sI −Aopt)

−1x0 = GΛ(sI −A)−1x0.

Now, thanks to (3.4):

Ξ(s) (R− + GΛD)
−1 GΛ(sI −Aopt)

−1x0︸ ︷︷ ︸
=−û(s)

= V −∗G(sI −A)−1x0,

or, since Ξ−1(s) ∈ L(U) and s 7−→ GΛ(sI −A)−1x0 ∈ H2(C+; U), we have

û(s) = −Ξ−1(s)V −∗GΛ(sI −A)−1x0, û ∈ H2(C+; U).

In particular, this means that the observation operator given by the RHS of (2.11) is
admissible with respect to {Sopt(t)}t≥0.
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D. PROOF OF A RESULT BY ROSENBLUM AND ROVNYAK

For the sake of clarity here we prove the result of Rosenblum and Rovnyak [16,
Theorem B, pp. 15–16 and Theorem C (i), p. 96 with Ω = C+, C = U] stated therein
mainly for Hardy spaces on the unit disk.

Lemma D.1. If the operator of multiplication (Mf̂)(s) = Ω(s)f̂(s) by an analytic
operator multiplier C+ 3 s 7−→ Ω(s) ∈ L(U), belongs to L(H2(C+,L(U))), then
Ω ∈ H∞(C+,L(U)).

Proof. Let S be the canonical shift on H2(C+,U) [16, p. 95, where the Hardy classes
have been defined for the upper complex half-plane rather than C+ – so one has to
replace z in (5-4) by js],

(Sf̂)(s) :=
s− 1

s+ 1
f̂(s), f̂ ∈H2(C+,U); (S∗ĝ)(s)= ĝ(s) + 2

ĝ(s)− ĝ(1)

s− 1
, ĝ ∈ H2(C+,U).

It is straightforward to establish that 1
s+λ

c, where c ∈ U is an eigenvector of S∗,

corresponding to its eigenvalue λ−1
λ+1

. By the Paley-Wiener theorem, (f̂ ∈ H2(C+,U)

iff f ∈ L2(0,∞; U)), there holds with eλ(t) := e−λt, êλ(s) = 1
s+λ

:

〈
f̂ , êλc

〉
H2(C+,U)

= 〈f, eλc〉L2(0,∞;U) =

∞∫
0

〈f(t), e−λtc〉Udt =

=

∞∫
0

〈e−λtf(t), c〉Udt =

〈 ∞∫
0

e−λtf(t)dt, c

〉
U

= 〈f̂(λ), c〉U,

whence, replacing f̂ byMf̂ one obtains〈
f̂ ,M∗êλc

〉
H2(C+,U)

=
〈
Mf̂ , êλc

〉
H2(C+,U)

= 〈(Mf̂)(λ), c〉U =

= 〈Ω(λ)f̂(λ), c〉U = 〈f̂(λ), [Ω(λ)]∗c〉U = 〈f, eλ[Ω(λ)]∗c〉L2(0,∞;U) =

=
〈
f̂ , êλ[Ω(λ)]∗c

〉
H2(C+,U)

, ∀f̂ ∈ H2(C+,U), ∀c ∈ U,

or equivalently
êλ[Ω(λ)]∗c =M∗êλc, ∀c ∈ U.

Hence
1√

2 Reλ
‖[Ω(λ)]∗c‖U = ‖êλ[Ω(λ)]∗c‖H2(C+,U) = ‖M∗êλc‖H2(C+,U) ≤

≤ ‖M‖L(H2(C+,L(U))) ‖êλc‖H2(C+,U) = ‖M‖L(H2(C+,L(U)))
1√

2 Reλ
‖c‖U, ∀c ∈ U,

yielding ‖Ω(λ)‖L(U) ≤ ‖M‖L(H2(C+,L(U))). This estimate is valid for any λ ∈ C+, or
equivalently for any µ = λ−1

λ+1 , |µ| < 1, because the open unit disk is filled up by
eigenvalues of S∗.
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