PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Finite element simulation of the normal interaction of particles in the visco-elastic solid

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Symulacja oddziaływania cząstek ze sprężysto-lepkim ośrodkiem metodą elementów skończonych
Języki publikacji
EN
Abstrakty
EN
This paper addresses the 3D FE simulation of the normal interaction of stiff but deformable particles in binder matrix on the meso-scale. The particles are assumed to be elastic spheres while matrix is considered as viscoelastic solid. The investigation is aimed to capture interaction in terms of normal forces under tension. The problem is considered by applying geometrically linear and nonlinear approaches. Results illustrate influence of initial interparticle gap reduction of which yields significant increase of the interaction force. Comparison between purely elastic and viscoelastic solutions is also presented.
PL
Niniejszy artykuł dotyczy trójwymiarowej symulacji metodą elementów skończonych oddziaływania w kierunku normalnym sztywnych, ale odkształcalnych cząstek w spoistej osnowie na poziomie mezoskopowym. Cząstki są traktowane jako sprężyste kule, zaś osnowa jako ciało lepkosprężyste. Badania mają na celu znalezienie sił oddziaływania pod obciążeniem. Zagadnienie jest rozpatrywane przy zastosowaniu modelu geometrycznie liniowego i nieliniowego. Wyniki pokazują wpływ wstępnego zmniejszenia odstępu na znaczący wzrost siły oddziaływania. Przedstawione jest również porównanie między rozwiązaniem sprężystym i lepkosprężystym.
Rocznik
Strony
245--253
Opis fizyczny
Bibliogr. 28 poz., rys., wykr., tab.
Twórcy
autor
Bibliografia
  • [1] Alavi A.H., Ameri M., Gandomi A.H., Mirzahosseini M.R. 2011, Formulation of flow number of asphalt mixes using a hybrid computational method. Construction and Building Materials, 25, 3, pp. 1338-1355.
  • [2] Sivilevicius H., Podvezko V., Vakriniene S. 2011, The use of cons trained and unconstrained optimization models in gradation design of hot mix asphalt mixture. Construction and Building Materials, 25, 1, pp. 115-122.
  • [3] Schapery R.A. 1969, On the characterization of nonlinear viscoelastic materials. Polymer Engineering and Science, 9, 4, pp. 295-310.
  • [4] Schapery R.A. 2000, Nonlinear viscoelastic solids. International Journal of Solids and Structures, 37, pp. 359-366.
  • [5] Tashman L., Masad E., Little D., Zbib H. 2005, A microstructure-based viscoplastic model for asphalt concrete. International Journal of Plasticity, 21, 9, pp. 1659-1685.
  • [6] Park S.M., Kim Y.R., Schapery R.A. 1996, A viscoelastic continuum damage model and its application to uniaxial behaviour of asphalt concrete. Mechanics of Materials, 24, pp. 241-255.
  • [7] Schapery R.A. 1999, Nonlinear viscoelastic and viscoplastic constitutive framework for the nonlinear viscoelastic behavior of pultruded composite materials. International Journal of Fracture, 97, pp. 33-66.
  • [8] Mun S., Lee S. 2010, Determination of the fatigue-cracking resistance of asphalt concrete mixtures at low temperatures. Cold Regions Science and Technology, 61, pp. 116-124.
  • [9] Krishnan J.M., Rajagopal K.R. 2005, On the mechanical behavior of asphalt. Mechanics of Materials, 37, 11, pp. 1085-1100.
  • [10] Liu Y., You Z., Dai Q., Mills-Beale J. 2011, Review of advances in understanding impacts of mix composition characteristics on asphalt concrete (AC) mechanics. International Journal of Pavement Engineering, 12, 4, pp. 385-405.
  • [11] Kose S., Guler M., Bahia H.U., Masad E. 2000, Distribution of strains within asphalt binders in hma using image and finite-element techniques. Transportation Research Record 1728, Transportation Research Board, Washington, D.C., pp. 21-2.
  • [12] Dai Q. 2011, Two- and three- dimensional micromechanical viscoelastic finite element modelling of stone- based materials with X- ray computed tomography images. Construction and Building Materials, 25, pp. 1102-1114.
  • [13] You Z., Adhikari S. 2008, Models for asphalt mixtures using X-ray computed tomography images. International Journal of Pavement Research and Technology, 1, 3, pp. 94-99.
  • [14] Sadd M.H., Dai Q., Parameswaran V., Shukla A. 2004, Microstructural Simulation of Asphalt Materials: Modelling and Experimental Studies. Journal of Materials In Civil Engineering March/April, pp. 107-114.
  • [15] Mo L.T., Huurman M., Wu S.P., Molenaar A.A.A. 2008, 2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete. Finite Elements in Analysis and Design, 44, 4, pp. 186-196.
  • [16] Guddati M.N., Feng Z., Kim YR. 2002, Toward a Micromechanics-based Procedure to Characterize Fatigue Performance of Asphalt Concrete. Transportation Research Record, No. 1789, Transportation Research Board, National Research Council, Washington, D.C., pp. 121-128.
  • [17] Sadd M.H., Dai Q.L., Parameswaran V., Shukla A. 2004, Simulation of asphalt materials using a finite element micromechanical model and damage mechanics. Journal of Transportation Research Record, 1832, pp. 86-94.
  • [18] Bahia H., Zhai H., Bonnetti K., Kose S. 1999, Nonlinear viscoelastic and fatigue properties of asphalt binders. Journal of Association of Asphalt Paving Technologists, 68, pp. 1-34.
  • [19] Dai Q., Zhanping Y 2007, Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete-Element Models. Journal of Engineering Mechanics, 133, 2, pp. 163.
  • [20] Jiang M.J., Yu H.S., Harris D. 2006, Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. International Journal.
  • [21] Chareyre B., Cortis A., Catalano E., Barthelemy E. 2011, Pore-scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings. Soft Condensed Matter arXiv: 1105.0297v2
  • [22] Zhu X., Yang Z., Guo X., Chen W. 2011, Modulus prediction of asphalt concrete with imperfect bonding between aggregate-asphalt mastic. Composites: 42 1404-1411
  • [23] Matweb [Online] http://www.matweb.com/ [cited 04 Feb. 2011LST EN 12697-34:2004.
  • [24] Huurman M., Woldekidan M.F. 2007, [online]. LOT Mortar respon se; measurements, test interpretation and determination of model parameters. TUD-report_7-07-170-3.pdf [cited 11 September 2010]. Available from Internet: http://citg.tudelft.nl/
  • [25] Bituminous mixtures - Test methods for hot mix asphalt - Part 34: Marshall Test. Date issue 2004-10-15. Lithuanian Standards Board, 2004.
  • [26] Ansys 2010. version 13 program manual.
  • [27] Johnson K.L. 1987, Contact mechanics. Cambridge University Press.
  • [28] Navardi S., Bhattacharya S. 2010, Axial pressure- difference between far-field across a sphere in viscous flow bounded by a cylinder. PHY SICS OF FLUIDS 22 1033505, p. 1-17.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-AGHT-0007-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.