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ON A NONLINEAR INTEGRODIFFERENTIAL
EVOLUTION INCLUSION

WITH NONLOCAL INITIAL CONDITIONS
IN BANACH SPACES
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Abstract. In this paper, we discuss the existence results for a class of nonlinear integro-
differential evolution inclusions with nonlocal initial conditions in Banach spaces. Our results
are based on a fixed point theorem for condensing maps due to Martelli and the resolvent
operators combined with approximation techniques.
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1. INTRODUCTION

This paper is concerned mainly with the existence of mild solutions for first-order
nonlinear evolution integrodifferential inclusions with nonlocal initial condition

x′(t) ∈ A(t)
[
x(t) +

t∫
0

H(t, s)x(s)ds
]
+

+ F

(
t, x(σ1(t)), . . . , x(σn(t)),

t∫
0

h(t, s, x(σn+1(s)))ds
)
, t ∈ J,

x(0) + g(x) = x0,

(1.1)

where J = [0, b], the state x(·) takes values in a Banach space X with the norm
| · | and A(t) is a closed linear operator on X with dense domain D(A), which is
independent of t. H(t, s), t, s ∈ J , is a bounded operator in X. F : J ×Xn+1 → P(X)
is a multivalued map, P(X) is the family of all subsets of X. h : ∆ × X → X,
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∆ = {(t, s) : 0 ≤ s ≤ t ≤ b}, g : C(J,X)→ X, σi : J → J, i = 1, . . . , n+ 1, are given
functions to be specified later.

The nonlocal Cauchy problem was studied by Byszewski [8,9], and subsequently, as
it can be applied in physics with better than the classical initial condition, it has been
studied extensively under various conditions on A(A(t)), F and g; see [1,10,12,25,26]
and references therein. Recently, the existence of solutions for some classes of ab-
stract integrodifferential equations and integrodifferential inclusions with nonlocal
conditions have been investigated by many authors. For example, Balachandran et
al. [2] have studied the nonlinear time varying delay integrodifferential equations of
Sobolev type with nonlocal conditions. Liang and Xiao [21] have established some
new theorems about the existence and uniqueness of solutions for the semilinear
integrodifferential equations with nonlocal initial conditions. Lin and Liu [22] have
discussed the nonlocal Cauchy problem for semilinear integrodifferential equations by
using resolvent operators. Liu [23] have obtained the representation of weak solutions
of Cauchy problem for integrodifferential evolution equations in abstract spaces. Ku-
mar [18] has proved the existence of solutions for nonlocal neutral integrodifferential
equations in Banach spaces by using the theory of analytic resolvent operators. Yan
[29, 30] have established a sufficient condition for the existence of mild solutions of
nonlinear functional integrodifferential equations with nonlocal conditions in Banach
spaces. Benchohra and Ntouyas [5] have studied nonlocal Cauchy problems for neutral
functional differential and integrodifferential inclusions in Banach spaces.

However, most of the previous research on nonlocal Cauchy problems was based
on the contraction mapping principle. This condition turns out to be quite restrictive.
The purpose of this paper is to prove the existence of mild solutions for nonlinear inte-
grodifferential inclusions (1.1) by relying on a fixed-point theorem for condensing maps
due to Martelli [24]. Our main condition is only concerned with the continuous and
Carathéodory conditions. Indeed, we only require that F satisfies the Carathéodory
condition. Moreover, we also have consider the case in which g is continuous but
without imposing severe compactness conditions and convexity.

The rest of this paper is organized as follows. In Section 2, we will recall briefly
some preliminary facts which will be used in paper. Section 3 is devoted to the ex-
istence of mild solutions of the problem (1.1). In Section 4, we present an example
illustrating the abstract theory of the previous sections. Finally in Section 5, we apply
the preceding technique to a controlled problem.

2. PRELIMINARIES

In this section, we introduce some basic definitions, notations and lemmas which are
used throughout this paper.

Let C(J,X) denote the Banach space of continuous functions from J into X with
the norm

‖x‖∞ = sup{|x(t)| : t ∈ J}

and let B(X) denote the Banach space of bounded linear operators from X into itself.
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A measurable function x : J → X is Bochner integrable if and only if |x| is
Lebesgue integrable (for properties of the Bochner integral see Yosida [31]). L1(J,X)
denotes the linear space of equivalence classes of all measurable functions x : J → X,
which are normed by

‖x‖L1 =

b∫
0

|x(t)|dt for all x ∈ L1(J,X).

Let (X, | · |) be a Banach space. A multivalued map G : X → P(X) is convex
(closed) valued if G(X) is convex (closed) for all x ∈ X. G is bounded on bounded
sets if G(B) =

⋃
x∈B G(x) is bounded in X for any bounded set B of X, that is,

supx∈B{sup{|y| : y ∈ G(x)}} <∞.
G is called upper semicontinuous (u.s.c.) on X if, for each x0 ∈ X, the set G(x0)

is a nonempty, closed subset of X and if, for each open set N of X containing G(x0),
there exists an open neighborhood V of x0 such that G(V ) ⊆ N .

The multivalued operator G is called compact if G(X) is a compact subset of
X. G is said to be completely continuous if G(D) is relatively compact for every
bounded subset D of X. If the multi-valued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed graph, i.e.,
xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

In what follows BCC(X) denotes the set of all nonempty bounded, closed and
convex subsets of X.

A multivalued map G : J → BCC(X) is said to be measurable if, for each x ∈ X,
the function k : J → R, defined by

k(t) = d(x,G(t)) = inf{|x− z| : z ∈ G(t)},

belongs to L1(J,R).
An upper semicontinuous map G : X → P(X) is said to be condensing if, for

any subset B ⊆ X with α(B) 6= 0, we have α(G(B)) < α(B), where α denotes the
Kuratowski measure of noncompactness [4].

G has a fixed point if there is x ∈ X such that x ∈ G(x). For more details on
multivalued maps see the books of Deimling [11], and Hu and Papageorgiou [14].

Definition 2.1. A resolvent operator for problem (1.1) is a bounded operator valued
function R(t, s) ∈ B(X), 0 ≤ s ≤ t ≤ b, the space of bounded linear operators on X,
having the following properties:

(a) R(t, s) is strongly continuous in s and t, R(s, s) = I, 0 ≤ s ≤ b, ‖R(t, s)‖ ≤
Meβ(t−s) for some constants M and β.

(b) R(t, s)Y ⊂ Y,R(t, s) is strongly continuous in s and t on Y, and Y is the Banach
space formed from D(A), the domain of A(t), endowed with the graph norm.

(c) For each x ∈ X,R(t, s)x is continuously differentiable in t, s ∈ J and

∂R

∂t
(t, s)x = A(t)

[
R(t, s)x+

t∫
s

H(t, τ)R(τ, s)xdτ
]
.



380 Zuomao Yan

The main tool in our approach is the following fixed-point theorem due to Martelli.

Lemma 2.2 (Martelli [24]). Let X be a Banach space and let G : X → BCC(X) be
a condensing map. If the set

Ω = {x ∈ X : λx ∈ λGx for some 0 < λ < 1}

is bounded, then G has a fixed point.

Remark 2.3. We remark that a completely continuous multivalued map is the easiest
example of a condensing map.

3. EXISTENCE OF MILD SOLUTIONS

In this section we give our main existence result for the problem (1.1). Now, we can
define the mild solution of the problem (1.1).

Definition 3.1. A continuous function x(t) satisfying the following integral inclusion:

x(t) ∈ R(t, 0)[x0 − g(x)] +

t∫
0

R(t, s)×

× F
(
s, x(σ1(s)), . . . , x(σn(s)),

s∫
0

h(s, τ, x(σn+1(τ)))dτ
)
ds

(3.1)

is called a mild solution of the problem (1.1) on J .

Further we assume the following hypotheses:

(H1) The resolvent operator R(t, s) is compact for t, s > 0.
(H2) For each (t, s) ∈ ∆, the function h(t, s, ·) : X → X is continuous and for each

x ∈ X the functions h(·, ·, x) : ∆→ X is strongly measurable.
(H3) F : J ×Xn+1 → BCC(X) is measurable to t for each (x1, . . . , xn+1) ∈ Xn+1,

u.s.c. with respect to (x1, . . . , xn+1) ∈ Xn+1 for each t ∈ J, and x ∈ C(J,X)
the set

SF,x =
{
f ∈ L1(J,X) :

f(t) ∈ F
(
t, x(σ1(t)), . . . , x(σn(t)),

t∫
0

h(t, s, x(σn+1(s)))ds
)}

is nonempty.
(H4) There exists a positive function p : J → [0,∞) and, for every s ∈ [0, t], the

function s 7→ e−βsp(s) belongs to L1([0, t],R+) such that

‖F (t, x1, . . . , xn+1)‖ := {|f | : f(t) ∈ F (t, x1, . . . , xn+1))} ≤
≤ p(t)Θ(‖x1‖+ . . .+ ‖xn+1‖),
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for a.e. t ∈ J and each xi ∈ X, i = 1, . . . , n+ 1, where Θ : [0,∞)→ (0,∞) is a
continuous nondecreasing function.

(H5) There exists an integrable function p0 : J × J → [0,∞) such that

‖h(t, s, x)‖ ≤ p0(t, s)Θ0(‖x‖), t, s ∈ J, x ∈ X,

where Θ0 : [0,∞)→ (0,∞) is a continuous nondecreasing function.
(H6) σi : J → J, i = 1, . . . , n+ 1, are continuous functions.
(H7) The function g(·) : C(J,X)→ X is continuous and there exists a δ ∈ (0, b) such

that g(φ) = g(ψ) for any φ, ψ ∈ C := C(J,X) with φ = ψ on [δ, b].
(H8) (i) There is a constant c > 0 such that

0 ≤ lim sup
‖φ‖∞→∞

|g(φ)|
‖φ‖∞

≤ c, φ ∈ C. (3.2)

(ii) The following inequality holds:

M2
0 c < 1, (3.3)

where M0 = M max{1, eβb}.

Lemma 3.2 ([20]). Let J be a compact real interval and let X be a Banach space.
Let F be a multivalued map satisfying (H3) and let Γ be a linear continuous operator
from L1(J,X) to C(J,X). Then the operator

Γ ◦ SF : C(J,X)→ BCC(C(J,X)), x→ (Γ ◦ SF )(x) := Γ(SF , x)

is a closed graph in C(J,X)× C(J,X).

Theorem 3.3. If hypotheses (H1)–(H8) are satisfied, then the nonlocal Cauchy prob-
lem (1.1) has at least one mild solution on J provided that

∞∫
1

1
s+ Θ(s) + Θ0(s)

ds =∞. (3.4)

Proof. We transform the problem (1.1) into a fixed point problem. Consider the
multi-valued map P : C(J,X)→ P(X) defined by

P (x) :=
{
ρ ∈ C(J,X) : ρ(t) = R(t, 0)[x0 − g(x)] +

t∫
0

R(t− s)f(s)ds, f ∈ SF,x
}

has a fixed point. This fixed point is then a mild solution of the problem (1.1).
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Let {δn : n ∈ N} be a decreasing sequence in (0, b) such that limn→∞ δn = 0. To
prove the above problem, we consider the following inclusion:

x′(t) ∈ A(t)
[
x(t) +

t∫
0

H(t, s)x(s)ds
]
+

+ F

(
t, x(σ1(t)), . . . , x(σn(t)),

t∫
0

h(t, s, x(σn+1(s)))ds
)
, t ∈ J,

x(0) +R(δn, 0)g(x) = x0,

(3.5)

has at least one mild solution xn ∈ C(J,X).
For fixed n ∈ N, set Pn : C(J,X)→ P(X) defined by

Pn(x) : =
{
ρn ∈ C(J,X) : ρn(t) =

= R(t, 0)[x0 −R(δn, 0)g(x)] +

t∫
0

R(t, s)f(s)ds, f ∈ SF,x
}

for t ∈ [0, b]. It is easy to see that the fixed point of Pn is the mild solution of
the nonlocal Cauchy problem (3.5). We now show that Pn satisfies all conditions of
Lemma 2.2. The proof will be given in several steps.
Step 1. Pn(x) is convex for each x ∈ C(J,X).

In fact, if ρ1
n, ρ

2
n ∈ Pn(x), then there exist f1, f2 ∈ SF,x such that for each t ∈ J

we have

ρin(t) = R(t, 0)[x0 −R(δn, 0)g(x)] +

t∫
0

R(t, s)fi(s)ds, i = 1, 2. (3.6)

Let 0 ≤ λ ≤ 1, then, for each t ∈ J we have

(λρ1
n + (1− λ)ρ2

n)(t) = R(t, 0)[x0 −R(δn, 0)g(x)]+

+

t∫
0

R(t, s)(λf1(s) + (1− λ)f2(s))ds.

Since SF,x is convex (because F has convex values) we have

λρ1
n + (1− λ)ρ2

n ∈ Pn(x).

Step 2. Pn(x) maps bounded sets into bounded sets in C(J,X).
In fact, we need only to show that there exists a positive constant d such that, for

each ρn ∈ Pn(x), x ∈ Bq := {x ∈ C([0, b], X) : ‖x‖∞ ≤ q}, we obtain ‖ρn‖∞ ≤ d. If
ρn ∈ Pn(x), then there exists f ∈ SF,x such that, for each t ∈ J, we have

ρn(t) = R(t, 0)[x0 −R(δn, 0)g(x)] +

t∫
0

R(t, s)f(s)ds. (3.7)
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However, on the other hand, from condition (H8), we conclude that there exist positive
constants ε and γ such that, for all ‖φ‖∞ > γ,

|g(φ)| ≤ (c+ ε)‖φ‖∞, M2
0 (c+ ε) < 1. (3.8)

Let
E1 = {φ : ‖φ‖∞ ≤ γ}, E2 = {φ : ‖φ‖∞ > γ},
C1 = max{|g(φ)|, φ ∈ E1}.

Therefore,
|g(φ)| ≤ C1 + (c+ ε)‖φ‖∞. (3.9)

It is from (H2), (H4)–(H6), (3.8) and (3.9) that for each t ∈ [0, b] we have

|ρn(t)| ≤

≤ |R(t, 0)[x0 −R(δn, 0)g(x)]|+
∣∣∣∣

t∫
0

R(t, s)f(s)ds
∣∣∣∣ ≤

≤Meβt[|x0|+M |g(x)|] +M0

t∫
0

eβ(t−s)|f(s)|ds ≤

≤M0[|x0|+M0(C1 + (c+ ε)‖x‖∞)]+

+M0

t∫
0

e−βsp(s)Θ
[
|x(σ1(s))|+ . . .+ |x(σn(s))|+

s∫
0

|h(s, τ, x(σn+1(τ)))|dτ
]
ds ≤

≤M0[|x0|+M0(C1 + (c+ ε)q)]+

+M0

t∫
0

e−βsp(s)Θ
[

sup
τ∈[0,b]

|x(s)|+ . . .+ sup
s∈[0,b]

|x(s)|+

+

s∫
0

p0(s, τ)Θ0(|x(σn+1(τ))|)dτ
]
ds ≤

≤M0[|x0|+M0(C1 + (c+ ε)q)]+

+M0

t∫
0

e−βsp(s)Θ
[
n sup
s∈[0,b]

|x(s)|+
s∫

0

p0(s, τ)Θ0( sup
τ∈[0,b]

|x(τ)|)dτ
]
ds ≤

≤M0[|x0|+M0(C1 + (c+ ε)q)]+

+M0Θ
[
nq + Θ0(q)

b∫
0

p0(s, s)ds
] b∫

0

e−βsp(s)ds =: d.

Thus, for each ρn ∈ Pn(Bq), ‖ρn‖∞ ≤ d.
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Step 3. Pn sends bounded sets into equicontinuous sets of C(J,X).
Let 0 < t1 < t2 ≤ b, Bq be a bounded set as in Step 2. For each x ∈ Bq and

ρn ∈ Pn(x), then there exists f ∈ SF,x such that for each t ∈ J, we have

ρn(t) = R(t, 0)[x0 −R(δn, 0)g(x)] +

t∫
0

R(t, s)f(s)ds. (3.10)

In the view of (3.10) and (H1)–(H5), we have

|ρn(t2)− ρn(t1)| ≤
≤ |[R(t2, 0)−R(t1, 0)][x0 −R(δn, 0)g(x)]|+

+

t1∫
0

|R(t2, s)−R(t1, s)f(s)|ds +

t2∫
t1

|R(t2, s)f(s)|ds ≤

≤ |R(t2, 0)−R(t1, 0)||[x0 −R(δn, 0)g(x)]|+

+
M0

M
Θ
[
nq + Θ0(q)

b∫
0

p0(s, s)ds
] t1∫

0

|R(t2, s)−R(t1, s)|e−βsp(s)ds+

+Meβt2Θ
[
nq + Θ0(q)

b∫
0

p0(s, s)ds
] t2∫
t1

e−βsp(s)ds.

The right-hand side of the above inequality tends to zero independently of x ∈ Bq as
(t2 − t1) → 0, since the compactness of R(t, s) for t, s > 0, implies the continuity in
the uniform operator topology. Thus Pn sends Bq into an equicontinuous family of
functions.

As a consequence of Step 2, Step 3, together with the Ascoli-Arzela theorem, we
conclude that Pn : C(J,X) → P(X) is completely continuous and therefore is a
condensing map.
Step 4. Pn has a closed graph.

Let x(m) → x∗, (m → ∞), ρ(m)
n ∈ Pn(x(m)), x(m) ∈ Bq and ρ(m)

n → ρ∗n. We shall
show that ρ∗n ∈ Pn(x∗). Now ρ

(m)
n ∈ Pn(x(m)) means that there exists f (m) ∈ SF,x(m)

such that, for each t ∈ J,

ρ(m)
n (t) = R(t, 0)[x0 −R(δn, 0)g(x(m))] +

t∫
0

R(t, s)f (m)(s)ds.

We must prove that there exists f∗ ∈ SF,x∗ such that, for each t ∈ J,

ρ∗n(t) = R(t, 0)[x0 −R(δn, 0)g(x∗)] +

t∫
0

R(t, s)f∗(s)ds.
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Clearly, we have that

‖(ρ(m)
n (t)−R(t, 0)[x0 −R(δn, 0)g(x(m))])−

− (ρ∗n(t)−R(t, 0)[x0 −R(δn, 0)g(x∗)])‖∞ → 0 as m→∞.

Consider the linear continuous operator Φ : L1(J,X)→ C(J,X),

f 7→ (Φf)(t) =

t∫
0

R(t, s)f(s)ds.

We can see that the operator Φ is linear and continuous. Indeed, one has

‖Φf‖∞ ≤M0Θ
[
nq + Θ0(q)

b∫
0

p0(s, s)ds
] t∫

0

e−βsp(s)ds.

We can see that the operator Φ is linear and continuous. From (H3) and Lemma 3.2,
it follows that Φ ◦ SF is a closed graph operator. Also, from the definition of Φ, we
have that

ρ(m)
n −R(t, 0)[x0 −R(δn, 0)g(x(m))] ∈ Φ(SF,x(m)).

Since x(m) → x∗, for some f∗ ∈ SF,x∗ , it follows that

ρ∗n(t)−R(t, 0)[x0 −R(δn, 0)g(x∗)] =

t∫
0

R(t, s)f∗(s)ds

for some f∗ ∈ SF,x∗ .
Step 5. The set Ω = {x ∈ C(J,X) : λ ∈ (0, 1), x = λPn(x)} is bounded.

Indeed, let λ ∈ (0, 1) and let x ∈ C(J,X) be a possible solution of x = λPn(x) for
some 0 < λ < 1. Then for any x ∈ Ω, we have

x(t) = λR(t, 0)[x0 −R(δn, 0)g(x)] + λ

t∫
0

R(t, s)f(s)ds (3.11)
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for some f ∈ SF,x. It follows from (H1)–(H6) and (3.11) that for each t ∈ [0, b] we
have

e−βt|x(t)| ≤M [|x0|+M0|g(x)|] +M

t∫
0

e−βsp(s)Θ
[
|x(σ1(s))|+ . . .+ |x(σn(s))|+

+

s∫
0

|h(s, τ, x(σn+1(τ)))|dτ
]
ds ≤

≤M [|x0|+M0(C1 + (c+ ε)‖x‖∞)] +M

t∫
0

e−βsp(s)Θ
[

sup
s∈[0,t]

|x(s)|+

+ . . .+ sup
s∈[0,t]

|x(s)|+
s∫

0

p0(s, τ)Θ0(|x(σn+1(τ))|)dτ
]
ds ≤

≤M [‖x0‖+M0(C1 + (c+ ε)‖x‖∞)]+

+M

t∫
0

e−βsp(s)Θ
[
n sup
s∈[0,t]

|x(s)|+
s∫

0

p0(s, τ)Θ0( sup
τ∈[0,s]

|x(τ)|)dτ
]
ds.

We consider the function η defined by

η(t) := sup{|x(s)| : 0 ≤ s ≤ t}, t ∈ [0, b].

By the previous inequality and (3.8), we have for t ∈ [0, b]

(e−βt −MM0(c+ ε))η(t) ≤M [|x0|+M0C1]+

+M

t∫
0

e−βsp(s)Θ
[
nη(s) +

s∫
0

p0(s, τ)Θ0(η(τ))dτ
]
ds.

Denote the right-hand side of the above inequality by w(t). Then we have

(e−βt −MM0(c+ ε))η(t) ≤ w(t) for all t ∈ [δ, b]

and
w(0) = M [|x0|+M0C1],

w′(t) ≤Me−βtp(t)Θ
[
nη(t) +

t∫
0

p0(s, s)Θ0(η(s))ds
]
≤

≤Me−βtp(t)Θ
[

neβt

1−MM0(c+ ε)eβt
w(t)+

+

t∫
0

p0(s, s)Θ0

(
eβs

1−MM0(c+ ε)eβs
w(s)

)
ds

]
, t ∈ [0, b].
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If ξ(t) = eβt

1−MM0(c+ε)eβt
w(t), then ξ(0) = 1

1−MM0(c+ε)
w(0), w(t) ≤ ξ(t), and

w′(t) ≤Me−βtp(t)Θ
[
nξ(t) +

t∫
0

p0(s, s)Θ0(ξ(s))ds
]
.

Let v(t) = nξ(t) +
∫ t
0
p0(s, s)Θ0(ξ(s))ds. Then v(0) = nξ(0), ξ(t) ≤ v(t), and we have

v′(t) = nξ′(t) + p0(t, t)Θ0(ξ(t)) ≤

≤ nβeβt

(1−MM0(c+ ε)eβt)2
w(t) +

neβt

1−MM0(c+ ε)eβt
w′(t) + p0(t, t)Θ0(v(t)) ≤

≤ nβeβt

(1−MM0(c+ ε)eβt)2
v(t)+

+
Mneβt

1−MM0(c+ ε)eβt
e−βtp(t)Θ(v(t)) + p0(t, t)Θ0(v(t)) ≤

≤ m∗(t)[v(t) + Θ(v(t)) + Θ0(v(t))],

where m∗(t) = max{ nβeβt

(1−MM0(c+ε)eβt)2
, Mneβt

1−MM0(c+ε)eβt
e−βtp(t), p0(t, t)}. This implies

for each t ∈ [0, b] that

v(t)∫
v(0)

ds

s+ Θ(s) + Θ0(s)
≤

t∫
0

m∗(s)ds <∞.

Thus from (3.4) there exists a constant d∗ such that v(t) ≤ d∗, t ∈ [0, b], and hence
|x| ≤ d∗, where d∗ depends only on the functions p, p0, Θ, and Θ0. This shows that
Ω is bounded.

As a consequence of Lemma 2.2, we deduce that Pn has at least fixed point xn in
C(J,X), which is in turn a mild solution of (3.5). Then we have

xn(t) = R(t, 0)[x0 −R(δn, 0)g(xn)] +
∫ t

0

R(t, s)fn(s)ds, (3.12)

for t ∈ [0, b], and some fn ∈ SF,xn .
Next we will show that the set {xn : n ∈ N} is relatively compact in C(J,X).

Step 6. {xn : n ∈ N} is equicontinuous on J .
For ε > 0, xn ∈ Bq, there exists a constant η > 0 such that for all t ∈ (0, b] and

ξ ∈ (0, η) with t+ ξ ≤ b we have

|xn(t+ ξ)− xn(t)| ≤
≤ |[R(t+ ξ, 0)−R(t, 0)][x0 −R(δn, 0)g(xn)]|+

+M0Θ
[
nq + Θ0(q)

∫ b

0

p0(s, s)ds
] ∫ t+ξ

t

e−βsp(s)ds+

+
M0

M
Θ
[
nq + Θ0(q)

∫ b

0

p0(s, s)ds
] ∫ t

0

|R(t+ ξ, s)−R(t, s)|e−βsp(s)ds.
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Using the compactness of R(t, s) for t, s > 0, we get that

|[R(t+ ξ, 0)−R(t, 0)][x0 −R(δn, 0)g(xn)]| < ε

3
, (3.13)

and
t+ξ∫
t

e−βsp(s)ds <
1

3M0Θ[nq + Θ0(q)
∫ b
0
p0(s, s)ds]

ε, (3.14)

t∫
0

|R(t+ ξ, s)−R(t, s)|e−βsp(s)ds < M

3M0Θ[nq + Θ0(q)
∫ b
0
p0(s, s)ds]

ε. (3.15)

Thus by (3.13)–(3.15) one has

|xn(t+ ξ)− xn(t)| < ε.

Therefore, {xn(t) : n ∈ N} is equicontinuous for t ∈ (0, b]. Clearly, {xn(0) : n ∈ N} is
equicontinuous.
Step 7. {xn(t) : n ∈ N} is relatively compact in X.

Let W (t) = {xn(t) : xn ∈ Pn(Bq)}. We note that W (0) is relatively compact in
X. Let 0 < t ≤ s ≤ b be fixed and ε a real number satisfying 0 < ε < t, for x ∈ Bq,
we define

xεn(t) = R(t, 0)[x0 −R(δn, 0)g(x)] +

t−ε∫
0

R(t, s)f(s)ds

for some f ∈ SF,x. Using the compactness of R(t, s) for t, s > 0, we obtain that the set
Wε(t) = {xεn(t) : xεn ∈ Pn(Bq)} is pre-compact in X for every ε, 0 < ε < t. Moreover,
for every x ∈ Bq we have

|xn(t)− xεn(t)| ≤
t∫

t−ε

|R(t, s)f(s)|ds ≤

≤M0Θ
[
nq + Θ0(q)

b∫
0

p0(s, s)ds
] t∫
t−ε

e−βsp(s)ds.

Therefore, there are relatively compact sets arbitrarily close to the setW (t) = {xn(t) :
xn ∈ Pn(Bq)}, and W (t) is a relatively compact in X.

Set

x̃n(t) :=
{
xn(t), if t ∈ [δn, b],
xn(δn), if t ∈ [0, δn].

Using condition (H7), we obtain

g(xn) = g(x̃n),
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where x̃n(t) = xn(t) for t ∈ [δn, b]. On the other hand, in Steps 6 and 7, applying the
Arzela-Ascoli’s theorem again one obtains the relatively compact of {x̃n : n ∈ N} in
C((0, b], X). Therefore there exists a subsequence of {x̃n : n ∈ N} denoted again by
{x̃n : n ∈ N} and a function x ∈ C((0, b], X) such that

x̃n → x as n→∞.

Therefore, by the continuity of R(t, s) and g, we get

xn(0) = x0 −R(δn, 0)g(xn) = x0 −R(δn, 0)g(x̃n)→ x0 − g(x) = x(0) as n→∞.

Thus the sequence {xn(0) : n ∈ N} is relatively compact.
These facts imply that {xn : n ∈ N} in C(J,X) is relatively compact. Therefore,

without loss of generality, we may suppose that

xn → x∗ ∈ C(J,X) as n→∞.

Obviously, x∗ ∈ C(J,X), taking the limit in (3.12) of both sides, we obtain

x∗(t) = R(t, 0)[x0 − g(x∗)] +

t∫
0

R(t, s)f∗(s)ds, (3.16)

for t ∈ J, and some f∗ ∈ SF,x∗ , which implies that x∗ is the mild solution of the
problem (1.1) and the proof of Theorem 3.3 is complete.

4. EXAMPLE

Consider the following first-order partial functional integrodifferential inclusions of
the form:

x′(t) ∈ ∂2

∂x2

[
a0(t, x)z(t, x) +

t∫
0

l(t, s)z(s, x)ds
]
+

+
z2(sin t, x)

(1 + t)(1 + t2)
+

t∫
0

ez(sin s,x)

(1 + t)(1 + t2)2(1 + s)2
ds,

z(t, 0) = z(t, π) = 0,

z(0, x) +
p∑
i=1

ci
3
√
z(ti, x) = z0(x), 0 ≤ t ≤ 1, 0 ≤ x ≤ π,

(4.1)

where a0(t, x) are continuous and satisfy certain smoothness conditions, 0 < t1 <
t2 < . . . < tp ≤ 1 and ci are constants, z0(x) ∈ X = L2([0, π]) and z0(0) = z0(π) = 0.

Let X = L2([0, π]) and the operators A(t) be defined by

A(t)w = a0(t, x)w
′′
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with the domain D(A) = {w ∈ X : w,w
′′
are absolutely continuous, w

′′ ∈ X,w(0) =
w(π) = 0}, then A(t) generates an evolution system and R(t, s) can be deduced from
the evolution systems [15,16,27] such that R(t, s) is compact and ‖R(t, s)‖ ≤Meβ(t−s)

for some constants M and β.
Define, respectively, F : [0, 1] × X × X → X,h : [0, 1] × [0, 1] × X → X and

g : C([0, 1], X)→ X by

F

(
t, z(σ(t)),

t∫
0

h(t, s, z(σ(s)))ds
)

(x) =
z2(sin t, x)

(1 + t)(1 + t2)
+

t∫
0

ez(sin s,x)

(1 + t)(1 + t2)(1 + s)2
ds,

∫ t

0

h(t, s, z(σ(s)))(x)ds =
∫ t

0

ez(sin s,x)

(1 + t)(1 + t2)2(1 + s)2
ds,

and

g(z)(x) =
p∑
i=1

ci
3
√
z(ti, x), z ∈ C([0, 1], X).

Moreover, we have

‖F (t, z, y)‖ ≤ 1
(1 + t)(1 + t2)

[‖z‖2 + ‖y‖],

where

y =
∫ t

0

ez(sin s,x)

(1 + t2)(1 + s)2
ds,

and
‖h(t, s, z)‖ ≤ 1

(1 + t2)(1 + s)2
exp(‖z‖).

It is easy to see that with these choices, the assumptions (H2)–(H8) of Theorem 3.3
are satisfied. Let σ(t) = sin t, and hence by Theorem 3.3, we deduce that the nonlocal
Cauchy problem (4.1) has a mild solution on [0, 1].

5. APPLICATION

This section is devoted to an application of the argument used in previous sections
to the controllability of a nonlinear evolution integrodifferential system with nonlo-
cal initial condition in a Banach space X. More precisely, we consider the following
problem:

x′(t) ∈ A(t)
[
x(t) +

∫ t

0

H(t, s)x(s)ds
]
+

+ F

(
t, x(σ1(t)), . . . , x(σn(t)),

∫ t

0

h(t, s, x(σn+1(t)))ds
)

+Bu(t), t ∈ J,

x(0) + g(x) = x0,
(5.1)
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where A(t), F and g are as in Section 3. Also, the control function u belongs to the
spaces L2(J, U), a Banach spaces of admissible control functions with U , a Banach
space. Further, B is a bounded linear operator from U to X. Recently, the problems
of the controllability of differential systems and integrodifferential systems in Banach
spaces were considered by many researchers, see for instance [3,6,13] and the references
therein. In the case of the nonlocal condition, the semilinear evolution inclusions has
been studied by Benchohra et al. [7], Guo et al. [17], Li and Xue [19].

Definition 5.1. A continuous function x(·) : J → X is said to be a mild solution to
the problem (5.1) if for all x0 ∈ X, it satisfies the following integral inclusion

x(t) ∈ R(t, 0)[x0 − g(x)]+

+

t∫
0

R(t, s)F
(
s, x(σ1(s)), . . . , x(σn(s)),

s∫
0

h(s, τ, x(σn+1(τ)))dτ
)
ds+

+

t∫
0

R(t, s)Bu(s)ds.

(5.2)

Definition 5.2. The system (5.1) is said to be controllable on the interval J if for
every x0, x1 ∈ X, there exists a control u ∈ L2(J, U) such that the mild solution x(t)
of system (5.1) satisfies x(b) + g(x) = x1.

We give the following assumptions:

(B1) The linear operator W : L2(J, U)→ X defined by

Wu =

b∫
0

R(b, s)Bu(s)ds

has an induced inverse operator W−1 which takes values in L2(J, U) \ KerW
and there exists positive constants M1 such that |BW−1| ≤M1.

(B2) The constants M,M1, c, b, β satisfy the inequality

M0[M0 +M1(1 +Meβb)bN0]c < 1, (5.3)

where M0 = M max{1, eβb}, N0 = max{1, e−βb}.

Remark 5.3. The construction of the operatorW and its inverse is studied by Quinn
and Carmichael in [28].

Theorem 5.4. Assume that hypotheses (H1)–(H8)(i), (3.4), (B1) and (B2) are
satisfied. Then the system (5.1) is controllable on J .

Proof. Using hypothesis (B1) for each arbitrary function x(·) define the control

ux(t) = W−1

[
x1 − g(x)−R(b, 0)(x0 − g(x))−

b∫
0

R(b, s)f(s)ds
]
(t)
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for some f ∈ SF,x. It shall be shown that when using this control the operator
P : C(J,X)→ P(X) defined by

P (x) :=
{
ρ ∈ C(J,X) : ρ(t) = R(t, 0)[x0 − g(x)] +

t∫
0

R(t, s)f(s)ds+

+

t∫
0

R(t, θ)BW−1

[
x1 − g(x)−R(b, 0)(x0 − g(x))−

−
b∫

0

R(b, s)f(s)ds
]
(θ)dθ, f ∈ SF,x

}

has a fixed point, and then x(·) is a mild solution of systems (5.1). Indeed, it is easy
to verify that

x1 − g(x) ∈ (Px)(b),

which means that the system is controllable. The remaining part of the proof is
similar to Theorem 3.3, the operator P has a fixed point which is a mild solution of
the problem (5.1). Hence, the system (5.1) is controllable on the interval J .
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