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1. INTRODUCTION

Fractional order models can be found to be more adequate than integer order models
in some real world problems as fractional derivatives provide an excellent tool for
the description of memory and hereditary properties of various materials and pro-
cesses. The mathematical modeling of systems and processes in the fields of physics,
chemistry, aerodynamics, electro dynamics of complex medium, polymer rheology,
etc. involves derivatives of fractional order. As a consequence, the subject of frac-
tional differential equations is gaining more importance and attention. There has
been significant development in ordinary and partial differential equations involving
both Riemann-Liouville and Caputo fractional derivatives. For details and examples,
one can see the monographs of Kilbas et al. [22], Miller and Ross [27], Podlubny
[32], Lakshmikantham et al. [23], the survey of Agarwal et al. [1,2]. In particular,
we investigated some fractional functional differential equations [4,42-44], fractional
evolution equations and optimal controls [34-39,45,46] and introduced an appropriate
definition for mild solutions based on the well known theory of the Laplace transform
and probability density functions.

During the past decades, differential inclusions arise in the mathematical modeling
of certain problems in economics, engineering, optimal control, etc. and are widely
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studied by many authors, see [7-10, 12,13, 15, 28-30, 33, 40, 41] and the references
therein. For some recent developments on fractional differential inclusions, we refer
the reader to the references [1-3,5, 6,14, 16,20, 25, 31].

Recently, Agarwal, Benchohra, Hamani [1] proved the existence of solutions for
the following fractional boundary problem in finite dimensional spaces by means of a
nonlinear alternative of Leray-Schauder type and a fixed point theorem for contraction
multivalued maps

CDix(t) € F(t,z(t)), t€J=1[0,b], 0<qg<1,
a1z(0) + agx(b) = as,

where ©D{ is the Caputo fractional derivative of order ¢, b > 0 is a finite number,
F:Jx R — P(R) is a multivalued map, where P(R) is the family of all nonempty
subsets of R, a1, as, ag are real constants with a; 4+ ag # 0.

In this paper, we extend the above work to study the controllability for system
governed fractional differential inclusions in infinite dimensional spaces of the type

{CDgx(t) € F(t,z(t)) + Bu(t), te J=[0,b], 0 < g < 1,

z(0) =x0 € X, (L)

where ¢ D{ is the Caputo fractional derivative, the state x(-) takes values in a Banach
space X, F': J x X — 2%\ {2} is a nonempty, bounded, closed, convex multivalued
map (not necessary compact). Also the control function u(-) is given in L?(J,U),
a Banach space of admissible control functions, with U being a Banach space. Finally,
B is a bounded linear operator from U into X.

To establish the controllability result for the system (1.1), the main idea used
here is to verify that & defined by (3.3) (see Section 3) is a compact multival-
ued map, upper semicontinuous with convex, closed values which guarantee the
Bohnenblust-Karlin’s fixed point theorem can be applied. For this purpose, we subdi-
vide the proof into five steps. The key step is to check that operator .% defined by (3.4)
(see Section 3) satisfies the conditions of Lasota-Opial’s result (see Lemma 2.7). More
technical problems have to be overcome in our proof when .% is a continuous mapping.
Both our method and the conditions on the multivalued map F (see [HF1]-[HF4])
are different from [1].

The rest of this paper is organized as follows. In Section 2, we give the necessary
preliminaries from the fields of fractional integral and derivative, multivalued maps.
Finally, we build up the controllability result for the system (1.1).

2. PRELIMINARIES
We denote by X a Banach space with the norm || - ||. Let Y be another Banach space,

Ly(X,Y) denote the space of bounded linear operators from X to Y. For measurable
functions m : J — R, we define the norm

1
Imllocn) = ( / |m<t>|ﬁdt) L 1<p<oo.
J
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Let LP(J,R)(1 < p < o0) be the Banach space of all Lebesgue measurable functions
m from J — R with ||m/||zr(s,r) < 0o. Let LP(J, X') be the Banach space of functions
f: J — X which are Bochner integrable normed by || f||zr(s,x). We denote by C,
the Banach space C(J, X) endowed with supnorm given by ||z||¢c = sup,c; ||z (t)]|, for
xz €C.

Let us recall the following known definitions. For more details, see [22].

Definition 2.1. The fractional integral of order « with the lower limit zero for a
function f : [0,00) — R is defined as

If) = 1_‘(17) / i _fis))lv ds, t>0, v>0,
0

provided the right hand side is point-wise defined on [0, c0), where T'(-) is the gamma
function.

Definition 2.2. The Riemann-Liouville derivative of order vy with the lower limit
zero for a function f : [0,00) — R can be written as

1 a f(s)
LD f(t :7—/751 ¢ 1 .

Definition 2.3. The Caputo derivative of order « for a function f : [0,00) — R can
be written as

n—1
00 = 4010~ %

0

k=
Remark 2.4. (1) If f(¢t) € C"[0,0), then

tk
'f(k)(O)), t>0, n—1<vy<n.

o~

¢
L ARIC) -
le} _ _qn (n) _
DY f(t) = ds=1""" t), t 1 .
10 = = [ e ds = IO, >0 n—1<q <
0
(2) The Caputo derivative of a constant is equal to zero.
(3) If f is an abstract function with values in X, then integrals which appear in

Definitions 2.1 and 2.2 are taken in Bochner’s sense.

We also introduce some basic definitions and results of multivalued maps. For more
details on multivalued maps see the books of Deimling [18] and Hu and Papageorgious
[21].

A multivalued map G : X — 2%\ {7} is convex (closed) valued if G(x) is convex
(closed) for all x € X. G is bounded on bounded sets if G(C') = |, G() is bounded

in X for any bounded set C of X, i.e., sup,cc { sup{|lyll : y € G(x)}} < 0.

Definition 2.5. G is called upper semicontinuous (u.s.c.) on X if for each zp € X,
the set G(z¢) is a nonempty closed subset of X, and if for each open set C' of X
containing G(x¢), there exists an open neighborhood V of zg such that G(V) C C.
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Definition 2.6. G is called completely continuous if G(C) is relatively compact for
every bounded subset C' of X.

If the multivalued map G is completely continuous with nonempty values, then G
is u.s.c. if and only if G has a closed graph, i.e., T, — Tu, Yn — Y«, Yn € Gz, imply
Y« € Gz,. G has a fixed point if there is a € X such that z € G(x).

The following lemmas are of great of importance in the proof of our main results.

Lemma 2.7 (Lasota and Opial [24]). Let J be a compact real interval, BCC(X)
be the set of all nonempty, bounded, closed and convex subset of X and F be a
multivalued map satisfying F : J x X — BCC(X) is measurable to t for each
fired x € X, w.s.c. to x for each t € J, and for each x € C the set Sp, =
{f e L (JX): f(t) € F(t,z(t)), t € J} is nonempty. Let F be linear continuous
from LY(J, X) to C. Then the operator
FoSp:C— BCCIC), v— (FoSp)(z)=%(Srs),
is a closed graph operator in C x C, where C = C(J, X).

Lemma 2.8 (Bohnenblust and Karlin [11]). Let D be a nonempty subset of X, which
is bounded, closed, and convez. Suppose G : D — 2%\ {@} is u.s.c. with closed, convex
values, such that G(D) C D and G(D) is compact. Then G has a fized point.

3. CONTROLLABILITY RESULTS

To set the framework for the controllability results, we need the following definitions.

Definition 3.1. A function z € C is said to be a solution of the system (1.1) if
z(0) = z¢ and there exists a function f € L'(J,X) such that f(t) € F(¢,x(t)) on
t € J and

“Dix(t) = f(t)+ Bu(t), t€ J, 0 < g < L.
Definition 3.2. The system (1.1) is said to be controllable on the interval J if for
every xo, 1 € X, there exists a control v € L?(.J,U) such that a solution x of system
(1.1) satisfies z(b) = ;.

We assume the following hypothesis:
[HW| The linear operator B : L*(J,U) — L'(J,X) is bounded, W : L*(J,U) — X
defined by .
1
Wu:—/ b— 5)9" ' Bu(s)ds
g [ 0= 9B

has an inverse operator W ~! which takes values in L?(J,U)/ker W, where the kernel
space of W is defined by kerW = {z € L?(J,U) : Wz = 0} and there exist constants
M, My > 0 such that ||B|| < M; and [|[W™1|| < Ms.

[HF1] F is a multivalued map satisfying F : J x X — BCC(X) is measurable to ¢ for
each fixed x € X, u.s.c. to = for each ¢t € J, and for each x € C the set

Spe={f€L'(JX): f(t) € F(t,z(t)), t € J}

is nonempty.
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[HF2] For each positive number r and x € C with ||z||¢ < r, there exists a constant
1
¢1 € (0,q) and Ly ,(-) € L9 (J,R") such that

sup {|| fIl : f(t) € F(t,x(t))} < Ly, (t)

for a.e. t € J.
[HF3] The function s — (t —s)9 'L .(s) € L*([0,], R") and there exists y > 0 such
that

t _
i i Jo (= 8)" Ly (s)ds

T—00 T

=7 < +o00.

[HF4] The function f : J — X is compact, where f € Sg, and Sp, takes the same
notation as in Lemma 2.7.
Now, we are ready to present and prove our main results.

Theorem 3.3. Suppose that [HW], [HF1]-[HF4| are satisfied and q € (3,1). Then
system (1.1) is controllable on J provided that

(q + My M b?)y
rarg <t (3.1)

Proof. Using hypothesis [HW], [HF1| and [HF2|, for an arbitrary function z(-) € C,
we can define the control u,(t) by

b
up(t) = W1 [ml — X0 — %/ (b—5)T" 1 f(s)ds|(t), t € J, (3.2)
0

where f € S .
We show that, using this control, the operator &2: C — 2 defined by

t

Px)=KxzeC:o(t)=zy+ ﬁ /(t —8)917 [ f(s) + Buy(s)|ds, f € Spzp (3.3)
0

has a fixed point x, which is a solution of the system (1.1). We observe that x; €
(Px)(b) which means that u, steers the system (1.1) from zg to 7 in a finite time
b. This implies that the system (1.1) is controllable on J.

We now show that &2 satisfies all the conditions of Lemma 2.8. For the sake of
convenience, we subdivide the proof into several steps.
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Step 1. &2 is convex for each x € C.
In fact, if @1 and @2 belong to Z(z), then there exist f1, fa € SF, such that for
each t € J, we have

pi(t) =
! t q—1 ¢ 1 t _ o)1 —
=x0+ m /(t —5)7 fi(s)ds + @ /(t 5)? ' Buy(s)ds =

0 0
t

=z + /(t —8)17 i (5) ds+

1
I'(q)
b
L/tfsqlBVV T — T L/ M fi (n)dn|(s)ds, i = 1,2
@ ) =
0 0
Let A € [0,1]. Then for each ¢ € J, we get

Apr(t) + (1 = Aga(t) =

1 1 B -
—r w0/“‘3> f1(5) + (1= ) fo(s)]ds+
1 t q .
F(qo/t_s B {xl—xo—b
1 q
F(q/ (b= A\ fr(n) + (1= A) fa(n)]dn| (s)ds.

Since Sg, is convex (because F' has convex values), Af; + (1 — \) f2 € Sp,. Thus,
o1+ (1= A2 € P(x).

Step 2. For each positive number r > 0, let B, = {z € C : ||z||c < r}. Obviously,
9B, is a bounded, closed and convex set of C. We claim that there exists a positive
number r such that £(%B,.) C B,..

If this is not true, then for each positive number r, there exists a function 2" € B,.,
but #(z") does not belong to B, i.e.,

12" = sup{so'”nc o € (%’“)} >,

(t) == Lt—sqflrzssLt—sq*lurss
&0 =0+ g [ = 9 @ ds+ s [ =9 B (s)as.

for some f" € Spgr.
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Taking into account (3.2), using [HW] and [HF2], we have

- I .
lar (I < I llza [l + llzoll + 5 /(b—S)q LI s)llds <
(q) Jo
b
< Mol + fol) + M [ (b= 9" Ly (5)ds.
0
On the other hand,

r < [[(Z2")(0)] <

t a=Ll¢r Lt—sq_luss
[ i elds+ g [ =9 B )i <

L'(q)

< lxoll +

< [lzoll +

I'(q)
M b?
I'(1+q)

Mo My ([l || + flzoll) 1

= ||z t — )it s)ds =
= o + R o [y (0

/o (t = )7 Ly ()ds+

b
Mz(\\x1\|+llxo||)+M2/o (b—S)q_lLf,r(S)dS] =

MpMybe [° 1 B

¢ b
=a+c / (t—8)7 'Ly, (s)ds + co / (b—s)T"' Ly, (s)ds,
0 0

where

My My b ([l || + [lol])

p— —|— 3
a ||l‘0|| F(l—i—q)
oo L My

T T P T(+a)

Dividing both sides of the above inequality by r and taking the limit as r — oo, using
[HF3], we get

(Cl + CQ)’}/ > 1.

This contradicts with condition (3.1). Hence, for some r > 0, 2(B,.) C B,..
Step 3. &2 sends bounded sets into equicontinuous sets of C.

Let 0 < s<t<t+h<bande > 0. For each z € B,, ¢ € P(x), there exists
a f € Sp, such that

I g—1 L (Y e ug(s)ds
o) =0+ s [ @ ds s [ -9 Buos



348 JinRong Wang, XueZhu Li, and Wei Wei

Clearly,
(t+h)— ) = ﬁ /:Jrh(t +h—s)T f(s)ds+
4 ﬁ /Ot[os +h—s) Tl (t— 5)T 1] f(s)ds+
+ ﬁ /tHh(t +h — 5)7  Buy(s)ds+
+ ﬁ /Ot[(t +h—58)T1 — (t — )97 | Buy(s)ds.
Let

It is obvious that

It +h) =@ < ZIIIII

Now, we only need to check that || ;]| = 0ash — 0,i=1,2,3,4.
For I, by the Holder inequality and [HF2|,

t+h

In < / (t+h— )01 | f(s)]]ds <

t
1 t+h
Sri/ (t+h—s)T Ly, (s)ds <
t
1 e
< —— .
S [( > 1] |L g ||Lq1(JR+) —0ash—0
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For I, let 8 = % € (—1,0), after some calculation, we have

1L < / [(t+h— )71 — (1 — 8)7 YLy o (s)ds <

-

t L 1—q1
S R e e L st I TR
t

L <

= L1 (J,R+)

¢ 1-q1
< —s)f —(t—s) L 1
_<LﬂW+h s)” —(t @]@) 1250, 2 ey <

1 1-q1
< gy (M2 =BT s
(2h) (A A—a1)

S A —— .
- (1+ﬁ)1_q1 ||Lf,rHLﬁ(J7R+) —0ash—0

For I5, I, repeating the same process of checking as in the case of I, I, and
nothing that

[[uz (1))

2bq |:<1 _Q1> q_q1:|1_q1
< x + ||z + bi—a1 = ,

one can verify that ||I5]| and ||I4|| tend to zero as h — 0.
As a result, we immediately obtain that

le(t+h) = @) — 0ash -0,
for all « € B,.. Therefore, #(*B,) C C is equicontinuous.
Step 4. The set II(t) = P (B,)(t) = {p(t) : ¢ € Z(B,)} C X is relatively compact
for any t € J.

By |HF4], we know that (- — s)?7!f(-) is compact, and then the set S =
={(t—s)T"1f(s): t € J s €0,t]} C X is relatively compact. So for any t € J,

Sl = {/Ot(t _ s)q—lf(s)ds} C teonvS

is relatively compact in X, where convS means the closure of the convex hull of S
in X. By [HW], we obtain that

S’ = {um =w! {xl — T — ﬁ /Ob(b - s)qlf(s)ds} tx € %T}

is relatively compact in L(J,U). As B : L*(J,U) — L*(J, X) is bounded, it implies
that BS” C L'(J, X) is relatively compact. So we know that

t
S = {/ (t — 5)7 ' Buy(s)ds : u, € S”} cX
0
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is relatively compact as the map y — fot (t—s)?ty(s)ds, L' (J, X) — X is continuous.
For any t € J,
P(B,)(t) C{zo}+ S+ 8",

we have that &2(B,)(t) is relatively compact in X for every ¢ € J. Thus, II(¢) is
relatively compact in X for every t € J.
Step 5. & has a closed graph.

Let @, — z. as n — 00, @, € P(x,), and v, — @, as n — oco. We shall show
that ¢, € & (z.). Since ¢, € P(x,,), there exists f,, € Sp,, such that

! t ¢t 1 t — 8)7 ' Buy, (s)ds =
enlt) = a0+ s [ (= ) ds+ s [ (0= 9 B, (s)as =

I -1
:;vo—l—@/o(t—s) fn (s)ds+

! t -1 -1 — — L ’ _ \g—1
+@/O(t—8) BW [1‘1 To F(q)/o (b—n)T" £, (n)dn|(s)ds.

We must prove that there exists f, € Sp 5, such that

=x L t —8)17 f, (s)ds L t — ) ' Buy (s)ds =
o) = a0+ s [ =9 s+ s [ (¢ Bu ()

I -1
:wo—i—@/o(t—s) fu (s)ds+

! t -1 -1 — — L ’ _ \g—1
+@/o (t=9)" BW [3:1 o F(q)/o (b—=m*" fu () dn|(s)ds.

Set
Uy (t) = Wtz — 20)(t).
Since W~ is continuous, then

Uy, (t) = Uy, (t), fort € J, asn — oo.

Clearly,

H (% Cwo— ﬁ /Ot(t )7 'Ba, (s)ds> -

1 /t -
— s —x0— == | (t—9)7"" Bi,, (s)ds) <
< I'(q) Jo c
Mybe _
< lon = pullec + T s, — @z, |lc — 0asn — oo.

Consider the linear operator .% : L*(J, X) — C,

t b
00 = g Je= 5 {16 = 5w (s [0 s a9 as. (30
0 0
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We can prove that the operator .% is continuous. In fact, for any 0 < ¢t < ¢+ < b,
0 >0,

[(FH(E+6) = (FHOI < T+ T,
where
t46

t
J1=(lq)o/||[(t+6—8)ql—(t—8)q1 ) ds + = /|| (t+6 = )7 £(5) ds.

Jzzr(lq)o/t [(t+0—8)Tt—(t—s)T | BW™ ( O/b mTf(n )(s) ds+

—

+ﬁ 76 (t+5—s)q_1BW_1<F(1qO/b )1 (n )( )| ds-

By [HF2| and the Holder inequality, we obtain

hs ﬁ/o [(t—8)71 = (t+6 — 5)7 YLy, (s)ds+
t+0
+ﬁ/t (t+6—8)"" Ly, (s)ds <
t 1-q1 t Q1
< ([le-a—wro-wrnmmas) - ([@aeias)

1 t 1—q1
< - _\B _<\B
< ([ = ro-as) 1Lal g+
1 t+9 I=q
1 8 <
T </t o= ds) Wsrll 3 ey

L gl
par (g,re) 148 148 | si+p\1-a
< ————— 2 (¢ t+6 + 4 +
M+ i 00 )

|| fT||Lq1 JR+) (1+ﬁ)(17q1)<

|| fr ||Lq1 (JR+)§(1+B)(1 q1)_

=T+

+
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On the other hand, we have

h <
< 20 L= o = v -y (o b(b—n)“f(n)dn>(s) ds+
b [T s [ (s [ an) )| as <
< 20 ([ie=or s s)qw?dsf x
o (/ (i [ 0wt wan) o st>é+

i ( / Tero- s>2<ql>ds> x
, ( [ (o [ o man)
< 20 ([ie-om s s>q-112ds)é «
» ( [ (s [0 n s man)o
- < [T s)“'*”ds) x
. ( [ (5 [0 n s man)o

< M8 ([l = e - s>q-112ds)é

1

2 2

ds) <
1

2 2

ds) +

2 3

ds) <

I a1
@/O(b—n) f(n)dn| +

M, M, /”5 o, N\ 1 _
+ t+6—s)2@ Vs —/ b—n)2"1f (n)dn| <
e <t ( ) e O( n) (n) dn
1q1> a— :| M7y Mo 1 9 2 2\ &
< bi-a Ly, X 27— (t+6)% + %)%+
—[(q—ql Iz I35 ey Ty * g =1 D) )
0 1

1—(]1> 1= ]lql M, M, 20x L
+ bi—a1 X x §°1%2 <
Kq—ql IL5r ||Lq1<JR+>(F( N2 V2q -1

1—q1
1—q1 a—a1 M1M2 04
<of(Ame)yER] Vypgy , o ML O
a1 (1,r+) (T'(q)) V2q—1
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As 0 — 0, one can see that J; and J tend to zero. Therefore, Z(f) € C.
Moreover, one has

7 L (" e MoMb ot
17 £lle < 577 [ =9I las+ s [ o=ty oy i <

1-q1
1-— a—q 1 Mo M b?
[(ql)bwi] Lol 2 [+2 ]
a—q L (1,x) [T(q)  q(T'(q))

IN

From [HF1] and Lemma 2.7, it follows that % o Sg is a closed graph operator. Also,
from the definition of .%, we have that

t
o — 10— 1) / (t— )1 Bay, (s)ds € F(Sps,).
0

L(q)

In view of x,, — x, as n — oo, it follows again from Lemma 2.7 that

t b
_i _g)a1 s) — -1 i —n)at s S
—F(q)o/@ 91 | £uls) - BW (F(q)o/w D ) dn ) 0| 0

for some f, € Sp,.. This implies that ¢, € P (x.).

As a consequence of Steps 1-5 with the well known Arzela-Ascoli theorem, we

conclude that & is a compact multivalued map, u.s.c. with convex closed values. As
a consequence of Lemma 2.8, we can deduce that &2 has a fixed point z, which is a
mild solution of the system (1.1). Thus, the system (1.1) is controllable on J. O
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