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EXISTENCE AND SOLUTION SETS
OF IMPULSIVE FUNCTIONAL DIFFERENTIAL

INCLUSIONS WITH MULTIPLE DELAY

Mohmed Helal and Abdelghani Ouahab

Abstract. In this paper, we present some existence results of solutions and study the topo-
logical structure of solution sets for the following first-order impulsive neutral functional
differential inclusions with initial condition:8>>>><>>>>:

d

dt
[y(t)− g(t, yt)] ∈ F (t, yt) +

n∗X
i=1

y(t− Ti), a.e. t ∈ J\{t1, . . . , tm},

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,

y(t) = φ(t), t ∈ [−r, 0],

where J := [0, b] and 0 = t0 < t1 < . . . < tm < tm+1 = b (m ∈ N∗), F is a set-valued map and
g is single map. The functions Ik characterize the jump of the solutions at impulse points tk
(k = 1, . . . ,m). Our existence result relies on a nonlinear alternative for compact u.s.c. maps.
Then, we present some existence results and investigate the compactness of solution sets,
some regularity of operator solutions and absolute retract (in short AR). The continuous
dependence of solutions on parameters in the convex case is also examined. Applications to
a problem from control theory are provided.

Keywords: impulsive functional differential inclusions, decomposable set, parameter
differential inclusions, AR-set, control theory.

Mathematics Subject Classification: 34K45, 34A60, 54C55, 54C60.

1. INTRODUCTION

The dynamics of many processes in physics, population dynamics, biology, medicine
may be subject to abrupt changes such that shocks, perturbations (see for instance
[1, 37] and the references therein). These perturbations may be seen as impulses.
For instance, in the periodic treatment of some diseases, impulses correspond to the
administration of a drug treatment or a missing product. In environmental sciences,
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impulses correspond to seasonal changes of the water level of artificial reservoirs. Their
models may be described by impulsive differential equations. The mathematical study
of boundary value problems for differential equations with impulses were considered
in 1960 by Milman and Myshkis [42] and then followed by a period of active research
which culminated in 1968 with the monograph by Halanay and Wexler [29].

Moreover, it is well known that time delay is an important factor of mathematical
models in ecology. Usually, time delays in those models have two cases: discrete delay
and distributed time delay (continuous delay)[48].

For the impulsive model with distributed time delay, papers [27, 34, 41, 52] have
investigated some ecological models with distributed time delay and impulsive control
strategy. Impulsive functional differential equations with multiple delay arise in the
study of pulse vaccination strategies. In [24] the authors consider the following model:



S′(t) = b− bS(t)− βS(t)I(t)
1 + αS(t)

+ γI(t− τ)e−bτ ,

E′(t) =
t∫

t−ω

βS(u)I(u)
N(u)

e−b(t−u)du,

I ′(t) =
βe−bωS(t− ω)I(t− ω)

1 + αS(t− ω)
− (b+ ω)I(t),

R′(t) =
t∫

t−ω
γI(u)e−b(t−u)du,

S(t+k ) = (1− θ)S(t−k ), t = kT, k ∈ N,
E(t+k ) = E(t−k ), t = kT, k ∈ N,
I(t+k ) = I(t−k ), t = kT, k ∈ N,
R(t+k ) = R(t−k ) + θS(t−k ), t = kT, k ∈ N,

(1.1)

where N = {0, 1, 2, . . . , }, S(t) +N(t) + I(t) = 1 for all t ≥ 0, and

(S) denotes the susceptible,
(I) the infectives,
(R) the removed group,
(E) the exposed but not yet infectious.

Important contributions to the study of the mathematical aspects of such equa-
tions have been undertaken in [10, 39, 46, 50] among others. Functional differential
equations and inclusions with impulsive effects with fixed moments have been recently
addressed by Djebali et al. [17], Yujun [56] and Yujun and Erxin [57]. Some existence
results on impulsive functional differential equations with finite or infinite delay may
be found in [44,45] as well. During the last couple of years, impulsive ordinary differ-
ential inclusions and functional differential inclusions with different conditions have
been intensely studied (see the book by Aubin [4], as well as the paper [30] and the
references therein).
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In this paper, we consider first order impulsive functional differential inclusions
with multiple delays of the form:

d

dt
[y(t)− g(t, yt)] ∈ F (t, yt) +

n∗∑
i=1

y(t− Ti), a.e. t ∈ J\{t1, . . . , tm},

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,
y(t) = φ(t), t ∈ [−r, 0],

(1.2)

where n∗ ∈ {1, 2, . . .}, r = max1≤i≤n∗ Ti, J := [0, b], F : J × D → Rn is a
given function, D = C([−r, 0],Rn), 0 = t0 < t1 < . . . < tm < tm+1 = b and
Ik ∈ C(Rn,Rn), k = 1, 2, . . . ,m, are given functions satisfying some assumptions that
will be specified later.

For any function y defined on [−r, b] and any t ∈ J\{t1, . . . , tm} we denote by yt
the element of D defined by yt(θ) = y(t+ θ), θ ∈ [−r, 0].

For the single case, some existence results of solutions for the problem (1.2) have
been obtained in [44, 45]. Our goal in this work is to complement and extend some
of these results to the case of differential inclusions; moreover the right-hand side
multi-valued nonlinearity may be either convex or nonconvex.

Some auxiliary results from multi-valued analysis are gathered together in Sec-
tion 2. In the first part of this work, we prove some existence results based on
the nonlinear alternative of the Leary Schauder type (in the convex case), on the
Bressan-Colombo selection theorem and on the Covitz and Nadler fixed point the-
orem for contraction multi-valued maps in a generalized metric space (in the non-
convex case). The compactness of the solution set and some geometric properties are
also provided. This is the content of Section 4. We will also discuss the question of
dependance on parameters in Section 5. The applicability of the obtained results, to
a problem from control theory is presented in Section 6. We end the paper with a rich
bibliography.

2. PRELIMINARIES

In this section, we recall from the literature some notations, definitions, and auxiliary
results which will be used throughout this paper. Let (E, |·|) be a Banach space, denote
by P(E) = {Y ⊂ E : Y 6= ∅}, Pcl(E) = {Y ∈ P(E) : Y is closed}, Pb(E) = {Y ∈
P(E) : Y is bounded}, Pcv(E) = {Y ∈ P(E) : Y is convex}, Pcp(E) = {Y ∈ P(E) : Y
is compact}, and Pwkcp(E) = {Y ∈ P(E) : Y is weakly compact}.

Let (X, d) and (Y, ρ) be two metric spaces and G : X → Pcl(Y ) be a multi-valued
map. A single-valued map g : X → Y is said to be a selection of G and we write
g ⊂ G whenever g(x) ∈ G(x) for every x ∈ X.

G is called upper semi-continuous (u.s.c. for short) on X if for each x0 ∈ X the set
G(x0) is a nonempty subset of X, and if for each open set N of Y containing G(x0),
there exists an open neighborhood M of x0 such that G(M) ⊆ Y. That is, if the set
G−1(V ) = {x ∈ X : G(x) ∩ V 6= ∅} is closed for any closed set V in Y . Equivalently,
G is u.s.c. if the set G+1(V ) = {x ∈ X : G(x) ⊂ V } is open for any open set V in Y .
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The following two results are easily deduced from the limit properties.

Lemma 2.1 (see e.g. [6, Theorem 1.4.13]). If G : X −→ Pcp(X) is u.s.c., then for
any x0 ∈ X,

lim sup
x→x0

G(x) = G(x0).

Lemma 2.2 (see e.g. [6, Lemma 1.1.9]). Let (Kn)n∈N ⊂ K ⊂ X be a sequence of
subsets where K is compact in the separable Banach space X. Then

co (lim sup
n→∞

Kn) =
⋂
N>0

co (
⋃
n≥N

Kn),

where coA refers to the closure of the convex hull of A.

The second one is due to Mazur (1933).

Lemma 2.3 (Mazur’s Lemma [43, Theorem 21.4]). Let E be a normed space and
{xk}k∈N ⊂ E be a sequence weakly converging to a limit x ∈ E. Then there exists a se-
quence of convex combinations ym =

∑m
k=1 αmkxk with αmk > 0 for k = 1, 2, . . . ,m

and
∑m
k=1 αmk = 1, which converges strongly to x.

G is said to be completely continuous if it is u.s.c. and, for every bounded subset
A ⊆ X, G(A) is relatively compact, i.e., there exists a relatively compact set K =
K(A) ⊂ X such that G(A) =

⋃
{G(x) : x ∈ A} ⊂ K. G is compact if G(X) is

relatively compact. It is called locally compact if, for each x ∈ X, there exists an
open neighborhood U of x such that G(U) is relatively compact. G is quasicompact
if, for each subset A ⊂ X, G(A) is relatively compact.

Definition 2.4. A multi-valued map F : J → Pcl(Y ) is said to be measurable
provided for every open U ⊂ Y , the set F+1(U) is Lebesgue measurable.

Lemma 2.5 ([14, 26]). The mapping F is measurable if and only if for each x ∈ Y ,
the function ζ : J → [0,+∞) defined by

ζ(t) = dist(x, F (t)) = inf{|x− y| : y ∈ F (t)}, t ∈ J,

is Lebesgue measurable.

The following two lemmas are needed in this paper. The first one is the celebrated
Kuratowski-Ryll-Nardzewski selection theorem.

Lemma 2.6 ([26, Theorem 19.7]). Let Y be a separable metric space and F : [a, b]→
P(Y ) a measurable multi-valued map with nonempty closed values. Then F has a
measurable selection.

Lemma 2.7 ([60, Lemma 3.2]). Let F : [0, b] → P(Y ) be a measurable multi-valued
map and u : [a, b] → Y a measurable function. Then for any measurable v : [a, b] →
(0,+∞), there exists a measurable selection fv of F such that for a.e. t ∈ [a, b],

|u(t)− fv(t)| ≤ d(u(t), F (t)) + v(t).
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Corollary 2.8. Let F : [0, b] → Pcp(Y ) be a measurable multi-valued map and u :
[0, b] → Y a measurable function. Then there exists a measurable selection f of F
such that for a.e. t ∈ [0, b],

|u(t)− f(t)| ≤ d(u(t), F (t)).

Proof. Taking v(t) = vn(t) = 1
n in Lemma 2.7, we get a measurable selection fn of F

such that
|u(t)− fn(t)| ≤ d(u(t), F (t)) + 1/n.

Using the fact that F has compact values, we may pass to a subsequence if necessary
to get that {fn(·)} converges to a measurable function f , yielding our claim.

We denote the graph of G to be the set Gr(G) = {(x, y) ∈ X × Y : y ∈ G(x)}.

Definition 2.9. G is closed if Gr(G) is a closed subset of X × Y , i.e. for every
sequences (xn)n∈N ⊂ X and (yn)n∈N ⊂ Y , if xn → x∗, yn → y∗ as n → ∞ with
yn ∈ F (xn), then y∗ ∈ G(x∗).

We recall the following two results. The first one is classical.

Lemma 2.10 ([16, Proposition 1.2]). If G : X → Pcl(Y ) is u.s.c., then Gr(G) is a
closed subset of X×Y. Conversely, if G is locally compact and has nonempty compact
values and a closed graph, then it is u.s.c.

Lemma 2.11. If G : X → Pcp(Y ) is quasicompact and has a closed graph, then G is
u.s.c.

Proof. Assume that G is not u.s.c. at some point x. Then there exists an open neigh-
borhood U of G(x) in Y , a sequence {xn} which converges to x, and for every l ∈ N
there exists nl ∈ N such that G(xnl) 6⊂ U. Then for each l = 1, 2, . . ., there are
ynl such that ynl ∈ G(xnl) and ynl 6∈ U ; this implies that ynl ∈ Y \U. Moreover,
{ynl : l ∈ N} ⊂ G({xn : n ≥ 1}). Since G is quasicompact, there exists a subsequence
of {ynl : l ∈ N} which converges to y. G closed implies that y ∈ G(x) ⊂ U ; but this
is a contradiction to the assumption that ynl 6∈ U for each nl.

Given a separable Banach space (E, |·|), for a multi-valued map F : J×E → P(E),
denote

‖F (t, x)‖P := sup{|v| : v ∈ F (t, x)}.

Definition 2.12. F is said:

(a) integrable if it has a summable selection f ∈ L1(J,E),
(b) integrably bounded, if there exists q ∈ L1(J,R+) such that

‖F (t, z)‖P ≤ q(t) for a.e. t ∈ J and every z ∈ E.

Definition 2.13. A multi-valued map F is called a Carathéodory function if:

(a) the function t 7→ F (t, x) is measurable for each x ∈ E,
(b) for a.e. t ∈ J , the map x 7→ F (t, x) is upper semi-continuous.
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Furthermore, F is L1-Carathéodory if it is locally integrably bounded, i.e., for each
positive r, there exists hr ∈ L1(J,R+) such that

‖F (t, x)‖P ≤ hr(t) for a.e. t ∈ J and all |x| ≤ r.

Lemma 2.14 ([40]). Given a Banach space E, let F : [a, b] × E −→ Pcp,cv(E) be
an L1-Carathédory multi-valued map such that for each y ∈ C([a, b], E), SF,y 6= ∅
and let Γ be a linear continuous mapping from L1([a, b], E) into C([a, b], E). Then the
operator

Γ ◦ SF : C([a, b], E) −→ Pcp,cv(C([a, b], E)),
y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

has a closed graph in C([a, b], E)× C([a, b], E).

For each x ∈ C(J,E), the set

SF,x =
{
f ∈ L1(J,E) : f(t) ∈ F (t, x(t)) for a.e. t ∈ [0, b]

}
is known as the set of selection functions.

Remark 2.15. (a) For each x ∈ C(J,E), the set SF,x is closed whenever F has closed
values. It is convex if and only if F (t, x(t)) is convex for a.e. t ∈ J.
(b) From [58, Theorem 5.10] (see also [40] when E is finite-dimensional), we know
that SF,x is nonempty if and only if the mapping t 7→ inf{|v| : v ∈ F (t, x(t))}
belongs to L1(J). It is bounded if and only if the mapping t 7→ ‖F (t, x(t))‖P =
sup{|v| : v ∈ F (t, x(t))} belongs to L1(J); this particularly holds true when F is
L1-Carathéodory. For the sake of completeness, we refer also to Theorem 1.3.5 in [35]
which states that SF,x contains a measurable selection whenever x is measurable and
F is a Carathéodory function.

For further readings and details on multi-valued analysis, we refer to the books
by Andres and Górniewicz [3], Aubin and Celina [5], Aubin and Frankowska [6],
Deimling [16], Górniewicz [26], Hu and Papageorgiou [31, 32], Kamenski et al. [35],
and Tolstonogov [53].

3. EXISTENCE RESULTS

Let J0 = [0, t1], Jk = (tk, tk+1], k = 1, . . . ,m, and let yk be the restriction of a
function y to Jk. In order to define solutions for the problem (1.2), consider the space
of piece-wise continuous functions

PC = {y : [0, b]→ Rn | yk ∈ C(Jk,Rn), k = 0, . . . ,m, such that
y(t−k ) and y(t+k ) exist and satisfy y(tk) = y(t−k ) for k = 1, . . . ,m}.

Endowed with the norm

‖y‖PC = max{‖yk‖∞ : k = 0, . . . ,m}, ‖yk‖∞ = sup
t∈[tk,tk+1]

|y(t)|
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it is a Banach space. Moreover, if

Ω = {y : [−r, b]→ Rn | y ∈ PC([0, b],Rn) ∩D},

then Ω is a Banach space with the norm

‖y‖Ω = sup{|y(t)| : t ∈ [−r, b]}.

Definition 3.1. A function y ∈ Ω∩
⋃k=m
k=1 AC(Jk,R), is said to be a solution of (1.2)

if y satisfies the equation d
dt (y(t)− g(t, yt)) = v(t) +

∑n∗
i=1 y(t− Ti) a.e. on J , t 6= tk,

k = 1, . . . ,m and the conditions y(t+k ) − y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m, v ∈ SF,y
and y(t) = φ(t) on [−r, 0].

Lemma 3.2. Let f : D → Rn be a continuous function and assume that the function
t→ g(t, yt) belongs to PC. Then y is the unique solution of the initial value problem


d
dt (y(t)− g(t, yt)) = f(yt) +

n∗∑
i=1

y(t− Ti) a.e. t ∈ J\{t1, . . . , tm},

y(t+k )− y(tk) = Ik(y(t−k )), k = 1, . . . ,m,
y(t) = φ(t), t ∈ [−r, 0],

(3.1)

where r = max
1≤i≤n∗

Ti if and only if y is a solution of the impulsive integral functional

differential equation

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ)−
∑

0<tk<t
∆k(g(t−k , yt−k )) +

∑n∗
i=1

0∫
−Ti

φ(s)ds+

+
t∫

0

f(ys)ds+
∑n∗
i=1

t−Ti∫
0

y(s)ds+
∑

0<tk<t
Ik(y(t−k )), if t ∈ [0, b],

(3.2)
where ∆k(g(t−k , yt−k )) = g(t+k , yt+k )− g(tk, ytk).

Proof. Let y be a possible solution of the problem (3.1). Then y|[−r,t1] is a solution

to
d

dt
(y(t)− g(t, yt)) = f(yt) +

n∗∑
i=1

y(t− Ti) for t ∈ [0, b]. Assume that tk < t ≤ tk+1,
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k = 1, . . . ,m. Integration of the above inequality yields

y(t−1 )− y(0)− (g(t−1 , yt−1 )− g(0, φ)) =

t1∫
0

f(ys)ds+
n∗∑
i=1

t1∫
0

y(s− Ti)ds,

y(t−1 )− y(0)− (g(t−1 , yt−1 )− g(0, φ)) =

t1∫
0

f(ys)ds+
n∗∑
i=1

t1−Ti∫
−Ti

y(s)ds,

y(t−2 )− y(t+1 )− (g(t−2 , yt−2 )− g(t+1 , yt+1 )) =

t2∫
t1

f(ys)ds+
n∗∑
i=1

t2∫
t1

y(s− Ti)ds,

y(t−2 )− y(t−1 )− (g(t−2 , yt−2 )− g(t+1 , yt+1 )) = I1(y(t−1 )) +

t2∫
t1

f(ys)ds+

+
n∗∑
i=1

t2−Ti∫
t1−Ti

y(s)ds,

...

...

...

y(t−k )− y(t+k−1)− (g(t−k , yt−k )− g(t+k−1, yt+k−1
)) =

tk∫
tk−1

f(ys)ds+

+
n∗∑
i=1

tk∫
tk−1

y(s− Ti)ds,

y(t−k )− y(t−k−1)− (g(t−k , yt−k )− g(t+k−1, yt+k−1
)) = Ik(y(t−k )) +

tk∫
tk−1

f(ys)ds+

+
n∗∑
i=1

tk−Ti∫
tk−1−Ti

y(s− Ti)ds,

y(t)− y(t−k )− (g(t, yt)− g(t+k , yt+k )) = Ik(y(t−k )) +

t∫
tk

f(ys)ds+
n∗∑
i=1

t−Ti∫
tk−Ti

y(s)ds.
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Then

y(t1)− y(0)− (g(t1, yt1)− g(0, φ)) =

t1∫
0

f(ys)ds+
n∗∑
i=1

t1−Ti∫
−Ti

y(s)ds,

y(t2)− y(t−1 )− (g(t2, yt2)− g(t+1 , yt+1 )) = I1(y(t−1 )) +

t2∫
t1

f(ys)ds+
n∗∑
i=1

t2−Ti∫
t1−Ti

y(s)ds,

...

y(t−k )− y(tk−1)− (g(tk, ytk)− g(t+k−1, yt+k−1
)) = Ik(y(t−k )) +

tk∫
tk−1

f(ys)ds+

+
n∗∑
i=1

tk−Ti∫
tk−1−Ti

y(s− Ti)ds,

y(t)− y(t−k )− (g(t, yt)− g(t+k , yt+k )) = Ik(y(t−k )) +

t∫
tk

f(ys)ds+
n∗∑
i=1

t−Ti∫
tk−Ti

y(s)ds.

Adding these together, we get

y(t) = y(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

(g(tk, ytk)− g(t+k , yt+k ))+

+
∑

0<tk<t

Ik(y(t−k )) +

t∫
0

f(ys)ds+
n∗∑
i=1

t−Ti∫
−Ti

y(s)ds,

y(t) = φ(0) + g(t, yt)− g(0, φ)−
∑

0<tk<t

∆k(g(t−k , yt−k )) +
∑

0<tk<t

Ik(y(t−k ))+

+

t∫
0

f(ys)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds.

Remark 3.3. If g is a continuous function, then the solution of the problem (3.1) is
of the form

y(t) = φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k )) +

t∫
0

f(ys)ds+

+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds, t ∈ [0, b].
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3.1. CONVEX CASE

Let us introduce the following hypotheses:

(H1) The function F : J ×D → Pcp,cv(Rn) is a Carathéodory map.
(H2) There exists a function p ∈ L1(J,R+) and a continuous nondecreasing function

ψ : [0,∞)→ [0,∞) such that

‖F (t, x)‖P ≤ p(t)ψ(‖x‖D) for a.e. t ∈ J and each x ∈ D

with
∞∫
c

ds

s+ ψ(s)
=∞,

where

c =
1

1− d1

[
‖φ‖D + d2 + ‖g(0, φ)‖D +

n∗∑
i=1

Ti‖φ‖D
]
.

(H3) For every bounded set B ∈ Ω, the set {t : t 7→ g(t, yt), y ∈ B} is equicontinuous
in Ω, g is continuous and there exist constants d1 ∈ [0, 1) and d2 > 0 such that

‖g(t, x)‖D ≤ d1‖x‖D + d2 for all x ∈ D.

Theorem 3.4. Assume that the hypotheses (H1)–(H3) hold. Then the IVP (1.2) has
at least one solution.

Proof. Transform the problem (1.2) into a fixed point problem. Consider the operator
N : Ω→ P(Ω) defined by:

N(y) =

=

h ∈ Ω : h(t) =


φ(t), if t ∈ [−r, 0],
φ(0) + g(t, yt)− g(0, φ) +

∑
0<tk<t

Ik(y(t−k ))+

t∫
0

f(s)ds+
∑n∗
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds, if t ∈ J

 ,

where f ∈ SF,y. Clearly, the fixed points of the operatorN are solutions of the problem
(1.2). We shall show that N satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type [23]. The proof is given in several steps.
Step 1. N(y) is convex for each y ∈ Ω.

Indeed, if h1, h2 belong to N(y) then there exist f1, f2 ∈ SF,y such that, for each
t ∈ J , we have

hi(t) = φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k )) +

t∫
0

fi(s)ds+

+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

y(s)ds, i = 1, 2.
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Let 0 ≤ d ≤ 1. Then for each t ∈ J , we have

(dh1 + (1− d)h2)(t) = φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k ))+

+

t∫
0

[df1(s) + (1− d)f2(s)]ds+

+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds.

Since SF,y is convex (because F has a convex value), then

dh1 + (1− d)h2 ∈ N(y).

Step 2. N maps bounded sets into bounded sets in Ω.
Indeed, it is enough to show that there exists a positive constant l such that for each
y ∈ Bq = {y ∈ Ω : ‖y‖Ω ≤ q} one has ‖N(y)‖P(Ω) ≤ l. Let y ∈ Bq and h ∈ N(y).
Then there exist f ∈ SF,y such that, for each t ∈ J , we have

h(t) = φ(0) + g(t, yt)− g(0, φ) +
∑

0<tk<t

Ik(y(t−k )) +

t∫
0

f(s)ds+

+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds.

By (H1)–(H2) we have, for each t ∈ J ,

|h(t)| ≤ |φ(0)|+ ‖g(t, yt)‖D + ‖g(0, φ)‖D +
∑

0<tk<t

|Ik(y(t−k ))|+

+

t∫
0

|f(s)|ds+
n∗∑
i=1

t−Ti∫
0

|y(s)|ds+
n∗∑
i=1

0∫
−Ti

|φ(s)|ds ≤

≤ ‖φ‖D + d1q + d2 + ‖g(0, φ)‖D +
m∑
k=1

sup
u∈B(0,q)

|Ik(u)|+

+

t∫
0

p(s)ψ(‖ys‖D)ds+ bqn∗ + r‖φ‖n∗ ≤

≤ ‖φ‖+ d1q + d2 + ‖g(0, φ)‖D +m sup
u∈B(0,q)

|Ik(u)|+

+ b‖p‖L1ψ(q) + bqn∗ + r‖φ‖n∗ := l.

Step 3. N maps bounded sets into equicontinuous sets of Ω.
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Using (H3) it suffices to show that the operator N∗ : Ω→ P(Ω) defined by

N∗(y) =

=


h ∈ Ω : h(t) =



φ(t), if t ∈ [−r, 0],

φ(0) +
t∫

0

f(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+

+
n∗∑
i=1

0∫
−Ti

φ(s)ds+
∑

0<tk<t
Ik(y(t−k )), if t ∈ J


,

where f ∈ SF,y.
As in [12, Theorem 3.2] we can prove that N∗(Bq) is equicontinuous.

Step 4. N has closed graph.
Let yn → y∗, hn ∈ N(yn) and hn → h∗. We shall prove that h∗ ∈ N(y∗).

hn ∈ N(yn) means that there exists fn ∈ SF,yn such that, for each t ∈ J ,

hn(t) = φ(0) + g(t, ynt ) + g(0, φ) +
∑

0<tk<t

Ik(yn(t−k ))+

+

t∫
0

fn(s)ds+
n∗∑
i=1

t−Ti∫
0

yn(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds.

We have to prove that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) = φ(0) + g(t, y∗t )− g(0, φ) +
∑

0<tk<t

Ik(y∗(t−k ))+

+

t∫
0

f∗(s)ds+
n∗∑
i=1

t−Ti∫
0

y∗(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds.

Clearly, since Ik, k = 1, . . . ,m, are continuous, we obtain that∥∥∥∥∥(hn(t)− φ(0)− g(t, ynt )− g(0, φ)−

−
∑

0<tk<t

Ik(yn(t−k ))−
n∗∑
i=1

t−Ti∫
0

yn(s)ds−
n∗∑
i=1

0∫
−Ti

φ(s)ds
)
−

−
(
h∗(t)− φ(0)− g(t, y∗t )− g(0, φ)−

−
∑

0<tk<t

Ik(y∗(t−k ))−
n∗∑
i=1

t−Ti∫
0

y∗(s)ds−
n∗∑
i=1

0∫
−Ti

φ(s)ds
)∥∥∥∥∥

Ω

tends to 0 as n→∞. Consider the operator

Γ : L1 → Ω,
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f 7→ Γ(f)(t) =

t∫
0

f(s)ds.

We can see that the operator Γ is linear and continuous. Indeed, one has

‖Γ(f)‖Ω ≤ ‖p‖L1ψ(q).

From Lemma 2.14, it follows that Γ ◦ SF is a closed graph operator. Since

hn(t)− φ(0)− g(t, ynt )− g(0, y0)−
∑

0<tk<t

Ik(yn(t−k ))−

−
n∗∑
i=1

t−Ti∫
0

yn(s)ds−
n∗∑
i=1

0∫
−Ti

φ(s)ds ∈ Γ(SF,yn),

it follows from Lemma 2.14 that for some f∗ ∈ SF,y∗

h∗(t) =



φ(t), t ∈ [−r, 0],
φ(0) + g(t, y∗t )− g(0, φ) +

∑
0<tk<t

Ik(y∗(t−k ))+

+

t∫
0

f∗(s)ds+
n∗∑
i=1

t−Ti∫
0

y∗(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds, t ∈ J.

Step 5. A priori bounds on solutions.
Let y be a possible solution of the problem (1.2). Let y be a possible solution of

the equation y ∈ λN(y), for some λ ∈ (0, 1). Then there exists f ∈ SF,y such that

y(t) =



φ(t), if t ∈ [−r, 0],
φ(0) + g(t, yt)− g(0, φ) +

∑
0<tk<t

Ik(y(t−k )),

+

t∫
0

f(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds, if t ∈ J.

Thus

y(t) = λ

φ(0) + g(t, yt)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

t∫
0

f(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds
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for all t ∈ [0, t1]. Hence

|y(t)| ≤ |φ(0)|+ ‖g(t, yt)‖D + ‖g(0, φ)‖D+

+
n∗∑
i=1

0∫
−Ti

|φ(s)|ds+

t∫
0

|f(s)|ds+
n∗∑
i=1

t−Ti∫
0

|y(s)|ds ≤

≤ ‖φ‖D + d1‖yt‖D + d2 + ‖g(0, φ)‖D+

+
n∗∑
i=1

Ti‖φ‖∞ + n∗

t∫
0

|y(s)|ds+

t∫
0

p(s)ψ(‖ys‖D)ds.

(3.3)

We consider the function

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, t ∈ [0, t1]. (3.4)

Therefore,

µ(t) ≤ 1
1− d1

L∗ +

t∫
0

p∗(s)(µ(s) + ψ(µ(s)))ds

 , (3.5)

where

L∗ = ‖φ‖D + d2 + ‖g(0, φ)‖D +
n∗∑
i=1

Ti‖φ‖D

and
p∗(t) = n∗ + p(t), t ∈ [0, t1].

Denoting by β(t) the right hand side of the last inequality we have

µ(t) ≤ β(t), t ∈ [0, t1],

and

β(0) =
1

1− d1

[
‖φ‖D + d2 + ‖g(0, φ)‖D +

n∗∑
i=1

Ti‖φ‖D
]
,

and

β′(t) =
1

1− d1
p∗(t)[ψ(µ(t)) + µ(t)] ≤

≤ 1
1− d1

p∗(t)[ψ(β(t)) + β(t)].

This implies that for each t ∈ [0, t1]

β(t)∫
β(0)

ds

ψ(s) + s
≤ 1

1− d1

t1∫
0

p∗(s)ds <
1

1− d1

∞∫
c

ds

ψ(s) + s
.
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Thus from (H2) there exists a constant K1 such that β(t) ≤ K1, t ∈ [−r, t1], and
hence

sup{|y(t)| : t ∈ [−r, t1]} ≤ K1.

Let t ∈ (t1, t2]. Then

y(t) = λ

y(t+1 ) + g(t, yt)− g(t1, yt1) +

t∫
t1

f(s)ds+
n∗∑
i=1

t−Ti∫
t1−Ti

y(s)ds


and

y(t+1 ) = y(t1) + I1(y(t1)).

Thus
|y(t+1 )| ≤ |y(t1)|+ |I1(y(t1))| ≤ K1 + sup{|I1(u)| : |u| ≤ K1}.

Thus analogous to the above proof we can show that there exists K2 > 0 such that

sup{|y(t)| : t ∈ [t1, t2]} ≤ K2.

We continue this process and also take into account that

y(t) = λ

y(t+m) + g(t, yt)− g(tm, ytm) +

t∫
tm

f(s)ds+
n∗∑
i=1

t−Ti∫
tm−Ti

y(s)ds

 , t ∈ (tm, b],

and
y(t+m) = y(tm) + I1(y(tm)).

We obtain that there exists a constant Km such that

sup{|y(t)| : t ∈ [tm, b]} ≤ Km.

Consequently, for each possible solution y to z = λP (z) for some λ ∈ (0, 1) we have

‖y‖Ω ≤ max{Ki : i = 1, . . . ,m} := K.

Set
U = {y ∈ Ω : ‖y‖Ω < K + 1}.

and consider the operatorN : U → Pcv,cp(Ω). From the choice of U , there is no y ∈ ∂U
such that y ∈ γN(y) for some γ ∈ (0, 1). As a consequence of the Leray-Schauder
nonlinear alternative [23], we deduce that N has a fixed point y in U , which is a
solution of the problem (1.2).
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3.2. THE NONCONVEX CASE

In this section we present a result for the problem (1.2) in the spirit of the linear alter-
native of Laray-Schauder type [23] for single-valued maps, combined with a selection
theorem due to Bressan and Colombo [13] for lower semi-continuous multivalued maps
with decomposable values.

Let A be a subset of J ×D. A is L⊗ B measurable if A belongs to the σ-algebra
generated by all sets of the form J ×D where J is Lebesgue measurable in J and D
is Borel measurable in D. A subset A of L1(J,E) is decomposable if for all w, v ∈ A
and J ⊂ J measurable, wXJ + vXJ−J ∈ A, where X stands for the characteristic
function.

Let F : Rn → P(Rn) be a multivalued operator with nonempty closed values. G
is lower semi-continuous (l.s.c) if the set {x ∈ X : F (x)∩B 6= ∅} is open for any open
set B ∈ Rn.

Definition 3.5. Let Y be a separable metric space and let N : Y → P (L1(J,Rn))
be a multivalued operator. We say that N has property (BC) if:

1. N is lower semi-continuous (l.s.c.),
2. N has nonempty closed and decomposable values.

Let F : J × D → P(Rn) be a multivalued map with nonempty compact values.
Assign to F the multivalued operator

F : Ω→ P(L1(J,Rn))

by letting
F(y) = {g ∈ L1(J,Rn) : v(t) ∈ F (t, yt) for a.e. t ∈ J}.

The operator F is called the Niemytzki operator associated to F .

Definition 3.6. Let F : J ×Rn → P(Rn) be a multivalued function with nonempty
compact values. We say F is of lower semi continuous type (l.s.c. type) if its associ-
ated Niemytzky operator F is lower semi-continuous and has nonempty closed and
decomposable values.

Next we state a selection theorem due to Bressan and Colombo [13].

Theorem 3.7. Let Y be a separable metric space and let N : Y → P(L1(J,Rn)) be
a multivalued operator which has property (BC ). Then N has a continuous selection.
i.e. there exists a continuous function (single-valued) g̃ : Y → L1(J,Rn) such that
g̃(y) ∈ N(y) for every y ∈ Y .

Let us introduce the following hypotheses which are used in the sequel:

(A1) F : J ×D → P(Rn) is nonempty compact valued multivalued map such that:
(a) (t, x) 7→ F (t, x) is L ⊗ B measurable,
(b) x 7→ F (t, x) is lower semi-continuous for a.e. t ∈ J .
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(A2) For each q > 0, there exists a function hq ∈ L1(J,R+) such that

‖F (t, x)‖P ≤ hq(t) for a.e. t ∈ J and for x ∈ D with ‖x‖D ≤ q.

The following lemma is crucial in the proof of our main theorem.

Lemma 3.8 ([22]). Let F : J ×D → P(Rn) be a multivalued map with noneempty,
compact values. Assume that (A1)-(A2) hold. Then f is of l.s.c. type.

Theorem 3.9. Suppose that (H2)-(H3) and (A1)-(A2) hold. Then the problem (1.2)
has at least one solution.

Proof. (A1) and (A2) imply by Lemma 3.8 that F is of lower semi-continuous type.
Then from Theorem 3.7 there exists a continuous function f : Ω → L1(J,Rn) such
that f(y) ∈ F(y) for all y ∈ Ω. Consider the following problem:

d
dt [y(t)− g(t, yt)] = f(yt) +

∑n∗
i=1 y(t− Ti), a.e. t ∈ J\{t1, . . . , tm},

y(t+k )− y(t−k ) = Ik(y(t−k )), k = 1, . . . ,m,
y(t) = φ(t), t ∈ [−r, 0].

(3.6)

Remark 3.10. If y ∈ Ω is a solution of the problem (3.6), then y is solution to the
problem (1.2).

Consider the operator N1 : Ω→ Ω defined by

N1(y) =



φ(t), if t ∈ [−r, 0],
φ(0) + g(t, yt)− g(0, φ) +

∑
0<tk<t

Ik(y(t−k ))+

+

t∫
0

f(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds, if t ∈ J.

As in Theorem 3.4, we can prove that the single-valued operator G is compact and
there exists M∗ > 0 such that for all possible solutions y, we have ‖y‖Ω < M∗. Now,
we only check that N1 is continuous. Let {yn : n ∈ N} converges to some limit y∗
in Ω. Then

‖N1(yn)−N1(y)‖Ω ≤ ‖g(·, yn. )− g(·, y.)‖D +

b∫
0

|f(yns )− f(ys)|ds+

+
m∑
k=1

|Ik(yn(t−k ))− Ik(y(t−k ))|.

Since the functions f and Ik, k = 1, . . . ,m, are continuous, we have

‖N1(yn)−N1(y)‖Ω ≤ ‖g(·, yn. )− g(·, y.)‖D +

b∫
0

|f(yns )− f(ys)|ds+

+
m∑
k=1

|Ik(yn(t−k ))− Ik(y(t−k ))|,
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which, by continuity of f and Ik (k = 1, . . . ,m), tends to 0 as n→∞. Let

U = {y ∈ Ω : ‖y‖Ω < M∗}.

From the choice of U , there is no y ∈ ∂U such that y = λN1y for in λ ∈ (0, 1). As a
consequence of the nonlinear alternative of the Leray-Schauder type [23], we deduce
that N1 has a fixed point y ∈ U which is a solution of the problem (3.6), hence a
solution to the problem (1.2).

In this part, we present a second existence result to the problem (1.2) with a non-
convex valued right-hand side. First, consider the Hausdorff pseudo-metric distance

Hd : P(E)× P(E) −→ R+ ∪ {∞}

defined by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}

where d(A, b) = inf
a∈A

d(a, b) and d(a,B) = inf
b∈B

d(a, b). Then (Pb,cl(E), Hd) is a metric

space and (Pcl(X), Hd) is a generalized metric space (see [36]). In particular, Hd

satisfies the triangle inequality.

Definition 3.11. A multi-valued operator N : E → Pcl(E) is called:

(a) γ-Lipschitz if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y) for all x, y ∈ E,

(b) a contraction if it is γ-Lipschitz with γ < 1.

Notice that if N is γ-Lipschitz, then for every γ′ > γ,

N(x) ⊂ N(y) + γ′d(x, y)B(0, 1) for all x, y ∈ E.

Our proofs are based on the following classical fixed point theorem for contraction
multi-valued operators proved by Covitz and Nadler [15] in 1970 (see also Deimling,
[16, Theorem 11.1]).

Lemma 3.12. Let (X, d) be a complete metric space. If G : X → Pcl(X) is a con-
traction, then FixN 6= ∅.

Let us introduce the following hypotheses:

(A1) F : J ×D −→ Pcp(Rn); t 7−→ F (t, x) is measurable for each x ∈ D.
(A2) There exists constants ck, such that

|Ik(x)− Ik(y)| ≤ ck|x− y| for each k = 1, . . . ,m, and for all x, y ∈ Rn.

(A3) There exists a function l ∈ L1(J,R+) such that

Hd(F (t, x), F (t, y)) ≤ l(t)|x− y| for a.e. t ∈ J and all x, y ∈ D,

with
Hd(0, F (t, 0)) ≤ l(t) for a.e. t ∈ J.
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(A4) There exist c∗ > 0 such that

‖g(t, u)− g(t, u∗)‖D ≤ c∗‖u− u∗‖D for all u, u∗ ∈ D, t ∈ J.

Theorem 3.13. Let assumptions (A1)–(A4) be satisfied. If c∗ +
∑k=m
k=1 ck < 1, then

the problem (1.2) has at least one solution.

Proof. In order to transform the problem (1.2) into a fixed point problem, let the
multi-valued operator N : Ω → P(Ω) be as defined in Theorem 3.4. We shall show
that N satisfies the assumptions of Lemma 3.12.

(a) N(y) ∈ Pcl(Ω) for each y ∈ Ω. Indeed, let {hn : n ∈ N} ⊂ N(y) be a sequence
converge to h. Then there exists a sequence fn ∈ SF,y such that

hn(t) =



φ(t), if t ∈ [−r, 0],
φ(0) + g(t, yt)− g(0, φ) +

∑
0<tk<t

Ik(y(t−k ))+

+

t∫
0

fn(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds, if t ∈ J.

Since F (·, ·) has compact values, let w(·) ∈ F (·, 0) be a measurable function such that

|f(t)− w(t)| = d(g(t), F (t, 0)).

From (A1) and (A2), we infer that for a.e. t ∈ [0, b]

|fn(t)| ≤ |fn(t)− w(t)|+ |w(t)| ≤

≤ l(t)‖y‖Ω + l(t) := M̂(t), for all n ∈ N.

Then the Lebesgue dominated convergence theorem implies that, as n→∞,

‖fn − f‖L1 → 0 and thus hn(t)→ h(t)

with

h(t) =



φ(t), if t ∈ [−r, 0],
φ(0) + g(t, yt)− g(0, φ) +

∑
0<tk<t

Ik(y(t−k ))+

+

t∫
0

f(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds, if t ∈ J,

proving that h ∈ N(y).
(b) There exists γ < 1 such that

Hd(N(y), N(y)) ≤ γ‖y − y‖Ω for all y, y ∈ Ω.
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Let y, y ∈ Ω and h ∈ N(y). Then there exists v(t) ∈ F (t, yt) such that

h(t) = φ(0) + g(t, yt)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

t∫
0

v(s) ds+

+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )).

From (A3) it follows that

Hd(F (t, yt), F (t, yt)) ≤ l(t)‖yt − yt‖D.

Hence, there is w ∈ F (t, yt) such that

|v(t)− w| ≤ l(t)‖yt − yt‖D, t ∈ J.

Consider U : J → P(Rn) given by

U(t) = {w ∈ Rn : |v(t)− w| ≤ l(t)‖yt − yt‖D}.

Since the multivalued operator V (t) = U(t)∩F (t, yt) is measurable (see [6,14,26]), by
Lemma 2.6, there exists a function v(t), which is a measurable selection for V. Thus
v(t) ∈ F (t, yt) and

|v(t)− v(t)| ≤ l(t)‖yt − yt‖D for a.e. t ∈ J.

Let us define for a.e. t ∈ J

h(t) = φ(0) + g(t, yt)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+
t∫

0

v(s) ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )).
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Then we have

|h(t)− h(t)| ≤
t∫

0

|v(s)− v(s)| ds+
n∗∑
k=1

t−Ti∫
0

|y(s)− y(s)|ds+

+
∑

0<tk<t

|Ik(y(t−k ))− Ik(y(t−k ))|+ ‖g(t, yt)− g(t, yt)‖D ≤

≤
t∫

0

l(s)‖ys − ys‖Dds+ n∗

t∫
0

|y(s)− y(s)|ds+

+
∑

0<tk<t

ck|y(tk)− y(tk)|+ c∗‖yt − yt‖D ≤

≤
t∫

0

l(s)eτL(s)ds‖y − y‖∗ +

t∫
0

n∗e
τL(s)ds‖y − y‖∗+

+
∑

0<tk<t

cke
τL(t)‖y − y‖∗ + eτL(t)c∗‖y − y‖∗ ≤

≤
t∫

0

1
τ

(eτL(s))′ds‖y − y‖∗ +

(
c∗ +

m∑
k=1

ck

)
eτL(t)‖y − y‖∗ ≤

≤ eτL(t)

(
c∗ +

1
τ

+
m∑
k=1

ck

)
‖y − y‖∗.

Thus

e−τL(t)|h(t)− h(t)| ≤

(
c∗ +

1
τ

+
m∑
k=1

ck

)
‖y − y‖∗,

where L(t) =
t∫

0

l∗(s)ds and

l∗(t) =

{
0, t ∈ [−r, 0],
l(t) + n∗, t ∈ [0, b],

and τ is sufficiently large and ‖ · ‖∗ is the Bielecki-type norm on Ω defined by

‖y‖∗ = sup{e−τL(t)|y(t)| : −r ≤ t ≤ b}.

By an analogous relation, obtained by interchanging the roles of y and y, it follows
that

Hd(N(y), N(y)) ≤

(
c∗ +

1
τ

+
m∑
k=1

ck

)
‖y − y‖∗ for all y, y ∈ Ω.

So, N is a contraction. Thus, by Lemma 3.12, N has a fixed point y, which is a
solution to (1.2).
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4. TOPOLOGICAL STRUCTURE OF SOLUTIONS SET

In this section we prove that the solutions set of the problem (1.2) is compact and
the operator solution is u.s.c.

Theorem 4.1. Under the assumptions of Theorem 3.4, the solution set for the prob-
lem (1.2) is compact, and the operator solution S(·) : D → P(Ω) defined by

S(φ) = {y ∈ Ω : y is a solution of (1.2)}

is u.s.c.

Proof. Compactness of the solution set. Let φ ∈ D. Then

S(φ) = {y ∈ Ω : y is a solution of the problem (1.2)}.

From Step 5 of Theorem 3.4, there exists M̃ such that for every y ∈ S(φ), ‖y‖Ω ≤ M̃.
Since N is completely continuous, N(S(φ)) is relatively compact in Ω. Let y ∈ S(φ).
Then y ∈ N(y). Hence S(φ) ⊂ N(S(φ)), where N is defined in the proof of Theorem
3.4. It remains to prove that SF (a) is a closed subset in Ω. Let {yn : n ∈ N} ⊂ S(φ)
be such that (yn)n∈N converges to y. For every n ∈ N, there exists vn such that
vn(t) ∈ F (t, ynt ), a.e. t ∈ J and

yn(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, ynt )− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

vn(s)ds+
n∗∑
i=1

t−Ti∫
0

yn(s)ds+
∑

0<tk<t

Ik(yn(t−k )), if t ∈ J.

As in Step 3 of Theorem 3.4, we can prove that there exists v such that v(t) ∈ F (t, yt)
and

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

v(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), if t ∈ J.

Therefore, y ∈ S(φ), which yields that S(φ) is closed, hence a compact subset in Ω.
We will show that S(·) is u.s.c. by proving that the graph

Γ(ϕ) := {(y, ϕ) ∈ Ω×D : y ∈ S(ϕ)}
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of S(ϕ) is closed. Let(yn, ϕn) ∈ Γ(ϕ), i.e., yn ∈ S(ϕn), and let (yn, ϕn) → (y, ϕ) as
n→∞. Since yn ∈ S(ϕn), there exists vn ∈ L1(J,Rn) such that

yn(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, ynt )− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

vn(s)ds+
n∗∑
i=1

t−Ti∫
0

yn(s)ds+
∑

0<tk<t

Ik(yn(t−k )), if t ∈ J.

Using the fact that (yn, ϕn) converge to (y, ϕ), there exists M > 0 such that

‖ϕn‖D ≤M for all n ∈ N.

As in Theorem 1.2, we can prove that there exists M > 0 such that

‖yn‖Ω ≤M for all n ∈ N.

By (H2), we have
|vn(t)| ≤ p(t)ψ(M), t ∈ J.

Thus, vn(t) ∈ p(t)ψ(M)B̄(0, 1) := χ(t) a.e. t ∈ J . It is clear that χ : J → Pcp,cv(Rn)
is a multivalued map that is integrable bounded. Since {vn(·) : n ≥ 1} ∈ χ(·), we may
pass to a subsequence if necessary to obtain that vn converges to v in L1(J,Rn).

It remains to prove that v ∈ F (t, yt), for a.e. t ∈ J . Lemma 2.3 yields the existence
of αni ≥ 0, i = n, . . . , k(n) such that

∑k(n)
i=1 αni = 1 and the sequence of convex

combinations gn(·) =
∑k(n)
i=1 αni vi(·) converges strongly to v in L1. Since F takes

convex values, using Lemma 2.2, we obtain that

v(t) ∈
⋂
n≥1

{gn(t)}, a.e. t ∈ J ⊂

⊂
⋂
n≥1

co{vk(t), k ≥ n} ⊂

⊂
⋂
n≥1

co{
⋃
k≥n

F (t, ykt )} =

= co(lim sup
k→∞

F (t, ykt )).

(4.1)

Since F is u.s.c. with compact values, then by Lemma 2.1, we have

lim sup
n→∞

F (t, ynt ) = F (t, yt) for a.e. t ∈ J.

This with (4.1) imply that v(t) ∈ co F (t, yt). Since F (·, ·) has closed, convex values,
we deduce that v(t) ∈ F (t, yt) for a.e. t ∈ J.



272 Mohmed Helal and Abdelghani Ouahab

Let

z(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

v(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), if t ∈ J.

Since the functions Ik, k = 1, . . . ,m are continuous, we obtain the estimates

‖yn − z‖Ω ≤ ‖g(t, ynt )− g(t, yt)‖D +

b∫
0

|v̄n(s)− v(s)|ds+

+
m∑
k=1

|Ik(yn(tk))− Ik(y(tk))|+
n∗∑
i=1

t−Ti∫
0

|yn(s)− y(s)|ds.

The right-hand side of the above expression tends to 0 as n→ +∞. Hence,

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

v(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), if t ∈ J.

Thus, y ∈ S(ϕ), Now show that S(ϕ) maps bounded sets into relatively compact sets
of Ω. Let B be a compact set in Rn and let {yn} ⊂ S(B). Then there exist {ϕn} ⊂ B
such that yn ∈ S(ϕn). Since {ϕn} is a compact sequence, there exists a subsequence
of {ϕn} converging to ϕ, so from (H2), there exists M∗ > 0 such that

‖yn‖Ω ≤M∗, n ∈ N.

We can show that {yn : n ∈ N} is equicontinous in Ω. As a consequence of the
Arzelá-Ascoli Theorem, we conclude that there exists a subsequence of {yn} converg-
ing to y in Ω. By a similar argument to the one above, we can prove that

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

v(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
∑

0<tk<t

Ik(y(t−k )), if t ∈ J,

where v ∈ SF,y. Thus y ∈ S(ϕ). This implies that S(ϕ) is u.s.c.
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In this part we show that the solution set of the problem (1.2) is AR.

Definition 4.2. A space X is called an absolute retract (in short X ∈ AR) provided
that for every space Y , every closed subset B ⊆ Y and any continuous map f :
B → X, there exists a continuous extension f̃ : Y → X of f over Y , i.e. f̃(x) =
f(x) for every x ∈ B. In other words, for every space Y and for any embedding
f : X −→ Y , the set f(X) is a retract of Y.

Proposition 4.3 ([49]). Let C be a closed, convex subset of a Banach space E and let
N : C → Pcp,cv(C) be a contraction multivalued map. Then Fix(N) is a nonempty,
compact AR-space.

Our contribution is the following.

Theorem 4.4. Let F : J×D → Pcp,cv(Rn) be multivalued. Assume that all conditions
of Theorem 3.13 are satisfied. Then the solution set S[−r,b](φ) ∈ AR.

Proof. Let the multi-valued operator N : Ω → P(Ω) be as defined in Theorem 3.4.
Using the fact that F (·, ·) has convex and compact values by (A1)−(A2), then for every
y ∈ Ω we have N(y) ∈ Pcv,cp(Ω). By some Bielecki-type norm on Ω we can prove that
N is contraction. Hence, from proposition 4.3, the solution set S[−r,b](φ) = Fix(N)
is a nonempty, compact AR-space.

5. THE PARAMETER-DEPENDANT CASE

In this section, we consider the following parameter impulsive problem:


d

dt
[y(t)− g(t, yt)] ∈ F (t, yt, λ) +

n∗∑
i=1

y(t− Ti) a.e. t ∈ J\{t1, . . . , tm},
y(t+k )− y(t−k ) = Ik(y(t−k ), λ), k = 1, . . . ,m,
y(t) = φ(t), t ∈ [−r, 0],

(5.1)

where n∗ ∈ {1, 2, . . .}, r = max
1≤i≤n∗

Ti, F : J ×D×Λ→ Pcp(Rn) is a multi-valued map

with compact values, Ik(·, ·) : Rn×Λ→ Rn, k = 1, 2, . . . ,m, are continuous functions,
(Λ, dΛ) is a complete metric space.

In the case with no impulses, some existence results and properties of solutions for
semilinear and evolutions of differential inclusions with parameters were studied by
Hu et al. [33], Papageorgiou and Yannakakis [47] and Tolstonogov [54,55]; see also [7]
for a parameter-dependant first-order Cauchy problem. Very recently the parameter
problems of impulsive differential inclusions was studied by Djebali et al. [17], Graef
and Ouahab [28].
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5.1. THE CONVEX CASE

We will assume the following.

(B̃1) The multi-valued map F (·, x, λ) : [0, b]→ Pcp,cv(Rn) is measurable for all x ∈ Rn
and λ ∈ Λ.

(B̃2) The multi-valued map F (t, ·, ·) : D × Λ→ Pcp,cv(Rn) is u.s.c. for a.e. t ∈ [0, b].
(B̃3) There exists α ∈ [0, 1) and p, q ∈ L1(J,R+) such that

‖F (t, x, λ)‖P ≤ p(t)ψ(‖x‖D) for a.e. t ∈ J and for all x ∈ E, λ ∈ Λ.

Theorem 5.1. Assume that F satisfies (B̃1)–(B̃3). Then for every fixed λ ∈ Λ, there
exists y(·, λ) ∈ Ω a solution of the problem (5.1).

Proof. For fixed λ ∈ Λ, let Fλ(t, yt) = F (t, yt, λ), (t, yt) ∈ [0, b]× Rn and let Iλk (y) =
Ik(y, λ), k = 1, . . . ,m. It is clear that Fλ(·, u) is a measurable multi-valued map for
all u ∈ Rn, Fλ(t, ·) is u.s.c and

‖Fλ(t, x)‖P ≤ p(t)ψ(‖x‖D) for a.e. t ∈ J and each x ∈ D,

where p ∈ L1(J,R+) are as defined in (B̃3). To transform the problem (5.1) into a
fixed point problem, consider the operator N : Ω→ P(Ω) defined by

N(y) =

=

h ∈ Ω : h(t) =


φ(t), if t ∈ [−r, 0],
φ(0) + g(t, yt)− g(0, φ) +

∑
0<tk<t

Ik(y(t−k ), λ)+

+
t∫

0

v(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
n∗∑
i=1

0∫
−Ti

φ(s)ds, if t ∈ J

 ,

where v ∈ SF,y. Clearly, the fixed points of the operatorN are solutions of the problem
(5.1).

Define the mapping S : Λ→ Pcp(Rn) by

S(λ) = {y ∈ Ω : y is a solution of the problem (5.1)}.

From Theorem 3.4, S(λ) 6= ∅ so that S is well defined. Next, we prove the upper
semi-continuity of solutions in respect of the parameter λ.

Proposition 5.2. If hypotheses (B̃1)− (B̃3) hold, then S is u.s.c.

Proof. Step 1. S(·) ∈ Pcp(Rn). Let λ ∈ Λ and yn ∈ S(λ), n ∈ N. Then there exists
vn ∈ SFλ,yn such that

yn(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, (yn)t)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

vn(s)ds+
n∗∑
i=1

t−Ti∫
0

yn(s)ds+
∑

0<tk<t

Ik(yn(t−k ), λ), if t ∈ J.
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From (B̃3) and the continuity of Ik, k = 1, . . . ,m, we can prove that there exists
M > 0 such that ‖yn‖Ω ≤ M, n ∈ N. As in the proof of Theorem 3.4, Steps 2
to 3, we can easily prove that the set {yn : n ≥ 1} is compact in Ω; hence there
exists a subsequence of {yn} which converges to y in Ω. Since {vn}(t) is integrably
bounded, then arguing as in the proof of Theorem 4.1, there exists a subsequence
which converges weakly to v and then we obtain at the limit:

y(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, yt)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

v(s)ds+
n∗∑
i=1

t−Ti∫
0

y(s)ds+
∑

0<tk<t

Ik(y(t−k ), λ), if t ∈ J.

Hence S(·) ∈ Pcp(Rn).
Step 2. S(·) is quasicompact. Let K be a compact set in Λ. To show that S(K) is
compact, let yn ∈ S(λn), λn ∈ K. Then there exists vn ∈ SF (·,·,λn,yn), n ∈ N, such
that

yn(t) =



φ(t), if t ∈ [−r, 0],

φ(0) + g(t, (yn)t)− g(0, φ) +
n∗∑
i=1

0∫
−Ti

φ(s)ds+

+

t∫
0

vn(s)ds+
n∗∑
i=1

t−Ti∫
0

yn(s)ds+
∑

0<tk<t

Ik(y(t−k ), λn), if t ∈ J.

As mentioned in Step 1, {yn : n ≥ 1} is compact in Ω. Then there exists a subsequence
of {yn} which converges to y in Ω. Since K is compact, there exists a subsequence
{λn : n ≥ 1} in K such that λn converges to λ ∈ Λ. As we did above, we can easily
prove that there exists v(·) ∈ F (·, y.), λ) such that y satisfies (5.1).
Step 3. S(·) is closed. For this, let λn ∈ Λ be such that λn converge to λ and let
yn ∈ S(λn), n ∈ N be a sequence which converges to some limit y in Ω. Then yn
satisfies (5.1) and as we did above, we can use (B̃3) to show that the set {yn : n ≥ 1}
is equicontinuous in Ω. Hence, by the Arzelá-Ascoli Theorem, we conclude that there
exists a subsequence of {yn} converging to some limit y in Ω and there exists a
subsequence of {vn} which converges to v(·) ∈ F (·, y.), λ) such that y satisfies (5.1).
Therefore S(·) has a closed graph, hence u.s.c. by Lemma 2.10.

6. APPLICATION TO CONTROL THEORY

Many problems in applied mathematics, such as those in control theory, mathematical
economics, and mechanics, lead to the study of differential inclusions. In a differential
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inclusion the tangent at each state is prescribed by a multifunction instead of the
usual single-value function in differential equations. For single-valued functions the
controllability may be described by a nonlinear differential equations of the form

y′(t) = f(t, y(t), u(t)), t ∈ R+,

y(0) = a,

u ∈ U,
(6.1)

with constrained control u. Here f : R × R × R → R is a single-valued function
measurable in t and continuous in y, u. The time-varying set of constraints function
U : [0, 1] → Pcp(R) is a measurable multi-valued function. By u ∈ U , we mean
u(t) ∈ U(t), for a.e. t ∈ J. The problem (6.1) is solved if there is a control function
u for which the problem admits a solution. If we define the multi-function

F (t, x) = {f(t, x, u) : u ∈ U}, (6.2)

then Filippov [19] and Ważewski [59] have shown that under some assumptions the
control problem (6.1) coincides with the set of the Carathéodory solution of the fol-
lowing problem 

y′(t) ∈ F (t, y(t)), t ∈ R+,

y(0) = a,

u ∈ U,
(6.3)

with right-hand side given by (6.2).
The controllability of ordinary differential equations and inclusions were investi-

gated by many authors (see [8, 9, 12,20,36] for instance and the references therein).
And impulsive differential equations and inclusions dealing with control theory

were investigated by [2,11,25]. Indeed, the first motivation of the study of the concept
of differential inclusions comes from the development of some studies in control theory.
For more information about the relation between the differential inclusions and control
theory, see for instance [6, 21,38,51,53] and the references therein.

Hereafter, we apply the existence results and structure topology and geometry
obtained in Sections 3 and 4 to study the impulsive neutral problem, that is, the
problem (1.2):

d

dt
[y(t)− g(t, yt)] ∈ F (t, yt) +

n∗∑
i=1

y(t− Ti), t ∈ J\{t1, . . . , tm},

y(t+k )− y(t−k ) = Ik(y(tk)), k = 1, . . . ,m,
y(t) = φ(t) t ∈ [−r, 0],

(6.4)

with F given by (6.2), Ik : R → R, x → Ik(x) = bkx, bk ∈ R, k = 1, . . . ,m,
J =: [0, 1] and g : J ×D → R is a continuous function 0 < t1 < t2 < . . . < tm < 1,
Ti ∈ R+, i = 1, . . . , n∗, r = max1≤i≤n∗ Ti.

We will need the following auxiliary result in order to prove our main controllability
theorem.
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Theorem 6.1 ([6]). Let (Ω,A, µ) be a complete σ-finite measurable space, X a com-
plete separable metric space and F : Ω → P(X) a measurable set value map with
closed images. Consider a Carathéodory set-valued map G from Ω×X to a complete
separable metric space Y. Then the map

Ω 3 ω 7→ G(ω, F (ω)) ∈ P(Y )

is measurable.

Next, we state our main existence result.

Theorem 6.2. Assume that U and f satisfy the following hypotheses:

(H1) U : J → Pcv, cp(R+) is a measurable multi-function and has compact image.
(H2) The function f is linear in the third argument, i.e. there exist Carathéodory

functions fi : J ×D → R (i = 1, 2) such that for a.e. t ∈ J ,

f(t, x, u) = f1(t, x)u+ f2(t, x), ∀ (x, u) ∈ D × U.

(H3) There exist k ∈ L1(J, (0,+∞)) and a continuous nondecreasing function ψ such
that

|f(t, x, u)| ≤ k(t)ψ(‖x‖D) for a.e. t ∈ J, ∀x ∈ D and ∀u ∈ U

with
b∫

0

k(s)ds <

∞∫
0

ds

s+ ψ(s)
.

(H4) For every M > 0, there exists ε > 0 and a function R : [0, ε] → R+ with
lim
h→0

R(h) = 0, such that for every y ∈ Ω satisfying ‖y‖Ω ≤M , we have

|g(t, yt)− g(s, ys)| ≤ R(|t− s|) with |t− s| < ε.

and there exists c∗ > 0 such that

|g(t, u)| ≤ c(‖u‖D + 1) for every u ∈ D.

Then the control boundary value problem (6.1) has at least one solution.

Proof. Claim 1. Since U(·) is measurable, we can find un : [0, 1]→ R, n ≥ 1, Lebesgue
measurable functions such that

U(t) = {un(t) : n ≥ 1} for all t ∈ [0, 1].

From (H2) and (H3) we have

F (t, yt) = {f1(t, yt)un(t) + f2(t, yt) : n ≥ 1} for all t ∈ [0, b].

This implies that the map t 7→ F (t, ·) is a measurable multifunction. By (H3) and
(H4), we have that F (·, ·) ∈ Pcv(R). Using the compactness of U and the continuity
of f , we can easily show that F (·, ·) ∈ Pcp(R); then F (·, ·) ∈ Pcp, cv(R).
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Claim 2. The selection set of F is not empty. Since U is a measurable multifunction
and has compact image then F (t, x) = F (t, x). Let x ∈ R then from (H1) − (H3)
the map (t, u) → f(t, x, u) is L1-Carathéodory. Hence from Theorem 6.1 F (·, x) is
measurable.
Claim 3. Using the fact that U has a compact image and f is an L1-Carathéodory func-
tion, hence we can easily show that F (t, ·) is u.s.c. (see [18, Theorem 6.3, Claim 3]).
Claim 4. Let B be a bounded set in Ω, then there exists M∗ > 0 such that

‖u‖D ≤M∗ for every u ∈ B.

Then
|g(t, u)| ≤ c(M∗ + 1) for every u ∈ B.

The first part of the condition (H4) implies that

{t 7→ g(t, yt) : ‖y‖Ω ≤ c(M∗ + 1)}

is equicontinouous. Therefore, all conditions of Theorems 3.4 and 4.1 are fulfilled, and
then the problem (6.4) has at least one solution and solution set is compact.

The following auxiliary lemma is concerned with measurability for two-variable
multi-function.

Lemma 6.3 ([31]). Let (Ω, A) be a measurable space, X,Y two separable metric
spaces and let F : Ω×X → Pcl(Y ) be a multi-function such that:

(i) for every x ∈ X, ω → F (ω, x) is measurable,
(ii) for a.e. ω ∈ Ω, x→ F (ω, x) is continuous or Hd-continuous.

Then the mapping (ω, x)→ F (ω, x) is measurable.

Our contribution is the following.

Theorem 6.4. Assume that U and f satisfy the following hypotheses:

(H5) U : J → Pcp(R) is a measurable multi-function.
(H6) There exists k ∈ L1(J, (0,+∞)) such that

|f(t, x, u)− f(t, y, u)| ≤ k(t)‖x− y‖D for a.e. t ∈ J, ∀x ∈ D and ∀u ∈ U.

(H6) There exists p ∈ L1(J, (0,+∞)) such that

|f(t, x, u)| ≤ p(t) for a.e. t ∈ J, ∀x ∈ R and ∀u ∈ U.

(H7) there exists c∗ ∈ (0, 1) such that

|g(t, x)− g(t, z)| ≤ c∗‖x− z‖D for all x, z ∈ D.

If c∗ +
m∑
i=1

|bk| < 1. Then the solution set of the problem (6.1) is not empty.
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Proof. Clearly, F (·, x) is a measurable multi-function for any fixed x and F (·, ·) ∈
Pcp(R). To prove that F (t, ·) is k-Lipschitz, let x, y ∈ D and h ∈ F (t, x). Then there
exists u ∈ U such that h(t) = f(t, x, u). From (H7) we get successively the estimates

d(h, F (t, y)) = inf
z∈F (t,y)

|h− z| =

= inf
v∈U
|f(t, x, u)− f(t, y, v)| ≤

≤ |f(t, x, u)− f(t, y, u)| ≤
≤ k(t)‖x− y‖D.

By an analogous relation obtained by interchanging the roles of x and y, we find that
for each l ∈ F (t, y) it holds that

d(F (t, x), l) ≤ k(t)‖x− y‖D

and hence
Hd(F (t, x), F (t, y)) ≤ k(t)‖x− y‖D for each x, y ∈ R.

So, F (t, ·) is k-Lipschitz. Therefore F (t, ·) is Hd-continuous and from Lemma 6.3, the
two-variable multi-function (t, x) 7→ F (t, x) is L⊗B measurable. Then Aumann’s se-
lection theorem (see Wagner [58, Theorem 5.10]) implies the existence of a measurable
selection, hence SF,y has nonempty.

Then F (t, ·) is in fact u.s.c. (see [16, Proposition 1.1]). Finally, notice that F (t, 0)
is integrably bounded by (H7). Consequently, all the conditions of Theorem 3.13 are
met and the solution set of the problem (6.4) is not empty.

Remark 6.5. If F (·, ·) ∈ Pcv(R), then under the condition of Theorem 6.4 the
solution set of the problem (6.4) is an AR-space (see Theorem 4.4).
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