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ON THE HAT PROBLEM ON A GRAPH

Marcin Krzywkowski

Abstract. The topic of this paper is the hat problem in which each of n players is uni-
formly and independently fitted with a blue or red hat. Then everybody can try to guess
simultaneously his own hat color by looking at the hat colors of the other players. The team
wins if at least one player guesses his hat color correctly, and no one guesses his hat color
wrong; otherwise the team loses. The aim is to maximize the probability of winning. In this
version every player can see everybody excluding himself. We consider such a problem on a
graph, where vertices correspond to players, and a player can see each player to whom he is
connected by an edge. The solution of the hat problem on a graph is known for trees and
for cycles on four or at least nine vertices. In this paper first we give an upper bound on
the maximum chance of success for graphs with neighborhood-dominated vertices. Next we
solve the problem on unicyclic graphs containing a cycle on at least nine vertices. We prove
that the maximum chance of success is one by two. Then we consider the hat problem on a
graph with a universal vertex. We prove that there always exists an optimal strategy such
that in every case some vertex guesses its color. Moreover, we prove that there exists a graph
with a universal vertex for which there exists an optimal strategy such that in some case no
vertex guesses its color. We also give some Nordhaus-Gaddum type inequalities.

Keywords: hat problem, graph, degree, neighborhood, neighborhood-dominated, unicyclic,
universal vertex, Nordhaus-Gaddum.
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1. INTRODUCTION

In the hat problem, a team of n players enters a room and a blue or red hat is
uniformly and independently placed on the head of each player. Each player can see
the hats of all of the other players but not his own. No communication of any sort
is allowed, except for an initial strategy session before the game begins. Once they
have had a chance to look at the other hats, each player must simultaneously guess
the color of his own hat or pass. The team wins if at least one player guesses his hat
color correctly and no one guesses his hat color wrong; otherwise the team loses. The
aim is to maximize the probability of winning.
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The hat problem with seven players, called the “seven prisoners puzzle”, was for-
mulated by T. Ebert in his Ph.D. Thesis [12]. The hat problem was also the subject
of articles in The New York Times [26], Die Zeit [6], and abcNews [25]. It is also one
of the Berkeley Riddles [4].

The hat problem with 2k − 1 players was solved in [14], and for 2k players in [11].
The problem with n players was investigated in [7]. The hat problem and Hamming
codes were the subject of [8]. The generalized hat problem with n people and q colors
was investigated in [24].

There are many known variations of the hat problem (for a comprehensive list,
see [22]). For example in [19] there was considered a variation in which players do
not have to guess their hat colors simultaneously. In the papers [1, 10, 18] there was
considered a variation in which passing is not allowed, thus everybody has to guess
his hat color. The aim is to maximize the number of correct guesses. The authors of
[16] investigated several variations of the hat problem in which the aim is to design a
strategy guaranteeing a desired number of correct guesses. In [17] there was considered
a variation in which the probabilities of getting hats of each colors do not have to be
equal. The authors of [2] investigated a problem similar to the hat problem. There are
n players which have random bits on foreheads, and they have to vote on the parity
of the n bits.

The hat problem and its variations have many applications and connections to
different areas of science (for a survey on this topic, see [22]), for example: information
technology [5], linear programming [16], genetic programming [9], economics [1, 18],
biology [17], approximating Boolean functions [2], and autoreducibility of random
sequences [3, 12–15]. Therefore, it is hoped that the hat problem on a graph considered
in this paper is worth exploring as a natural generalization, and may also have many
applications.

We consider the hat problem on a graph, where vertices correspond to players and
a player can see each player to whom he is connected by an edge. This variation of the
hat problem was first considered in [20]. There were proven some general theorems
about the hat problem on a graph, and the problem was solved on trees. Additionally,
there was considered the hat problem on a graph such that the only known information
are degrees of vertices. In [21] the problem was solved on the cycle C4. The problem
on cycles on at least nine vertices was solved in [23].

In this paper first we give an upper bound on the maximum chance of success
for graphs with neighborhood-dominated vertices. We use this bound to solve the hat
problem on the graph obtained from K4 by the subdivision of one edge. We also prove
that there exists a graph having two vertices with the same open neighborhood for
which there exists an optimal strategy such that in some situation both those vertices
guess their colors. Next we solve the problem on unicyclic graphs containing a cycle
on at least nine vertices. We prove that the maximum chance of success is one by two.
Then we consider the hat problem on a graph with a universal vertex. We prove that
there always exists an optimal strategy such that in every case some vertex guesses its
color. Moreover, we prove that there exists a graph with a universal vertex for which
there exists an optimal strategy such that in some case no vertex guesses its color.
We also give some Nordhaus-Gaddum type inequalities.
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2. PRELIMINARIES

For a graph G, the set of vertices and the set of edges we denote by V (G) and E(G),
respectively. By complement of G, denoted by G, we mean a graph which has the
same vertices as G, and two distinct vertices of G are adjacent if and only if they are
not adjacent in G. If H is a subgraph of G, then we write H ⊆ G. Let v ∈ V (G). The
open neighborhood of v, that is {x ∈ V (G) : vx ∈ E(G)}, we denote by NG(v). We say
that a vertex of G is universal if it is adjacent to every one of the remaining vertices.
By a leaf we mean a vertex having exactly one neighbor. We say that a vertex v of
a graph G is neighborhood-dominated in G if there is some other vertex w ∈ V (G)
such that NG(v) ⊆ NG(w). We say that a graph is unicyclic if it contains exactly one
cycle as a subgraph.

The degree of vertex v, that is, the number of its neighbors, we denote by dG(v).
Thus dG(v) = |NG(v)|. The path (cycle, complete graph, respectively) on n vertices
we denote by Pn (Cn, Kn, respectively).

Let f : X → Y be a function. If for every x ∈ X we have f(x) = y, then we write
f ≡ y.

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors, where 1
corresponds to the blue color, and 2 corresponds to the red color.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi) means
color of vertex vi. The set of all cases for the graph G we denote by C(G), of course
|C(G)| = 2|V (G)|.

By a situation of a vertex vi we mean a function si : V (G) → Sc∪{0} = {0, 1, 2},
where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The set of all possible
situations of vi in the graph G we denote by Sti(G), of course |Sti(G)| = 2dG(vi).

We say that a case c for the graph G corresponds to a situation si of vertex vi

if c(vj) = si(vj), for every vj adjacent to vi. This implies that a case corresponds
to a situation of vi if every vertex adjacent to vi in the case has the same color as
in the situation. Of course, to every situation of the vertex vi correspond exactly
2|V (G)|−dG(vi) cases.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G)
→ Sc ∪ {∗} = {1, 2, ∗}, which for a given situation gives the color vi guesses if
gi(si) 6= ∗, otherwise vi passes. Thus a guessing instruction is a rule determining the
behavior of a vertex in every situation. We say that vi never guesses its color if vi

passes in every situation, that is, gi ≡ ∗.
Let c be a case, and let si be the situation (of vertex vi) corresponding to that

case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)
(∗ 6= gi(si) 6= c(vi), respectively). By result of the case c we mean a win if at least
one vertex guesses its color correctly, and no vertex guesses its color wrong, that is,
gi(si) = c(vi) (for some i) and there is no j such that ∗ 6= gj(sj) 6= c(vj). Otherwise
the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is the
guessing instruction of vertex vi. The family of all strategies for a graph G we denote
by F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team wins (loses,
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respectively) using the strategy S we denote by W (S) (L(S), respectively). The set of
cases for which the team loses, and no vertex guesses its color we denote by Ln(S). By
the chance of success of the strategy S we mean the number p(S) = |W (S)|/|C(G)|. By
the hat number of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}.
We say that a strategy S is optimal for the graph G if p(S) = h(G). The family of all
optimal strategies for the graph G we denote by F0(G).

By solving the hat problem on a graph G we mean finding the number h(G).
Let G and H be graphs. Assume that H ⊆ G. Since every vertex from the set

V (G) \ V (H) can always pass, and every vertex vi ∈ V (H) can ignore the colors of
vertices from the set NG(vi) \NH(vi), we get the following relation between numbers
h(H) and h(G).

Fact 2.1. If H is a subgraph of G, then h(H) ≤ h(G).

Since the one-vertex graph is a subgraph of every graph, we get the following
corollary.

Corollary 2.2. For every graph G we have h(G) ≥ 1/2.

Using the definition of an optimal strategy, we immediately get the following
corollary.

Corollary 2.3. Let G be a graph. If S ∈ F0(G), then p(S) ≥ 1/2.

The following four results are from [20]. The first of them states that there does
not exist any graph such that the team can always win.

Fact 2.4. For every graph G we have h(G) < 1.

Now we state that a guess of any other vertex is unnecessary in a case in which
some vertex already guesses its color.

Fact 2.5. Let G be a graph, and let S be a strategy for this graph. Let c be a case in

which some vertex guesses its color. Then a guess of any other vertex cannot improve

the result of the case c.

Now there is a sufficient condition for deleting a vertex of a graph without changing
its hat number.

Theorem 2.6. Let G be a graph, and let v be a vertex of G. If there exists a strategy

S ∈ F0(G) such that v never guesses its color, then h(G) = h(G − v).

The next theorem is the solution of the hat problem on trees.

Theorem 2.7. For every tree T we have h(T ) = 1/2.

The following solution of the hat problem on cycles on at least nine vertices is a
result from [23]. It was obtained by proving that even if every vertex guesses its color
in exactly one situation, then in at least half of all cases some vertex guesses its color
wrong, causing the loss of the team.

Theorem 2.8. For every integer n ≥ 9 we have h(Cn) = 1/2.
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3. HAT PROBLEM ON A GRAPH WITH NEIGHBORHOOD –
DOMINATED VERTICES

In this section we consider the hat problem on graphs with neighborhood-dominated
vertices.

First, we investigate optimal strategies for such graphs.

Theorem 3.1. Let G be a graph, and let v1 and v2 be vertices of G. If NG(v1)
⊆ NG(v2), then there exists an optimal strategy for the graph G such that there is no

case in which both vertices v1 and v2 guess their colors.

Proof. Suppose that for every optimal strategy for the graph G there exists a case
in which both v1 and v2 guess their colors. Let S be any optimal strategy for G. Let
c1, c2, . . . , ck be the cases in which both vertices v1 and v2 guess their colors. These
cases correspond to the situations s1

2, s
2
2, . . . , s

l
2 of v2 (si

2 6= sj
2 for i 6= j). Let the

strategy S′ for the graph G differ from S only in that v2 does not guess its color in
the situations s1

2, s
2
2, . . . , s

l
2. Since in every one of the cases corresponding to these

situations v1 guesses its color, by Fact 2.5 the guess of v2 cannot improve the result
of any one of these cases. Therefore p(S) ≤ p(S′). Since S ∈ F0(G), the strategy
S′ is also optimal. In this strategy there is no case in which both v1 and v2 guess
their colors.

Corollary 3.2. Let G be a graph, and let v1, v2, . . . , vk be vertices of G such that

NG(v1) = NG(v2) = . . . = NG(vk). Then there exists an optimal strategy for the

graph G such that in each situation at most one of the vertices v1, v2, . . . , vk guesses

its color.

In the next fact we state that there exists a graph having two vertices with the
same open neighborhood for which there exists an optimal strategy such that in some
situation both those vertices guess their colors.

Fact 3.3. There exists an optimal strategy for the path P3 such that in some situation

the two vertices having the same open neighborhood guess their colors.

Proof. Let E(P3) = {v1v2, v2v3}, and let S = (g1, g2, g3) ∈ F(P3) be the strategy as
follows.

g1(s1) =

{

1 if s1(v2) = 2,
0 otherwise,

g2(s2) ≡ 1,

g3(s3) =

{

1 if s3(v2) = 2,
0 otherwise.

It means that the vertices proceed as follows.

— The vertex v1. If v2 has the second color, then v1 guesses it has the first color,
otherwise it passes.

— The vertex v2 always guesses it has the first color.
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— The vertex v3. If v2 has the second color, then v3 guesses it has the first color,
otherwise it passes.

It is not difficult to verify that |W (S)| = 4. Since |C(P3)| = 8, we get p(S) =
4/8 = 1/2. By Theorem 2.7 we have h(P3) = 1/2, therefore the strategy S is optimal.
We have NP3

(v1) = NP3
(v3), and in the strategy S both vertices v1 and v3 guess their

colors in the situation when v2 has the second color.

Let G be a graph, and let A1, A2, . . . , Ak be a partition of the set of vertices of
G such that the open neighborhoods of the vertices of each set Ai can be linearly
ordered by inclusion.

Now we give an upper bound on the chance of success for any strategy for the hat
problem on a graph with neighborhood-dominated vertices.

Theorem 3.4. Let G be a graph, and let k mean the minimum number of sets to

which V (G) can be partitioned in a way described above. Then h(G) ≤ k/(k + 1).

Proof. Theorem 3.1 implies that there exists a strategy S ∈ F0(G) such that in
every case at most one vertex from each set Ai guesses its color. The number of
cases in which the vertices of Ai guess their colors in the strategy S is at most
2(2|V (G)| − |W (S)|), otherwise the number of cases in which some of these vertices
guesses its color wrong is greater than 2|V (G)| − |W (S)|. This implies that the team
loses for more than 2|V (G)|−|W (S)| cases, and therefore the number of cases for which
the team wins is less than |W (S)|. This is a contradiction as |W (S)| is the number of
cases for which the team wins. In half of all cases the guesses of the vertices of Ai are
correct, thus their guesses are correct in at most 2|V (G)|−|W (S)| cases. Therefore the
number of cases for which the team wins using the strategy S is less than or equal to
k(2|V (G)| − |W (S)|). This implies that p(S) = |W (S)|/2|V (G)| ≤ k/(k + 1).

Now we use the previous theorem to solve the hat problem on the graph H (given
in Figure 1). This graph is obtained from K4 by the subdivision of one edge.

v3

v4

v1

v2

v5

Fig. 1. The graph H

Fact 3.5. h(H) = 3/4.

Proof. It is easy to observe that NH(v1) ⊆ NH(v3) and NH(v2) = NH(v5). This
implies that we can partition the set of vertices of H into three sets the open neigh-
borhoods of which can be linearly ordered. By Theorem 3.4 we have h(G) ≤ 3/4. On
the other hand, by Fact 2.1 we get 3/4 = h(K3) ≤ h(H) as K3 ⊆ H .
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4. HAT PROBLEM ON A UNICYCLIC GRAPH

In this section we solve the hat problem on unicyclic graphs containing a cycle on at
least nine vertices.

Theorem 4.1. If G is a unicyclic graph containing the cycle Ck for some k ≥ 9,
then h(G) = 1/2.

Proof. The result we prove by induction on the number n of vertices of G. For n = k
the Theorem holds by Theorem 2.8. Now assume that n > k. Assume that for every
unicyclic graph G′ with n − 1 vertices containing Ck we have h(G′) = 1/2. Let S
be an optimal strategy for G. If some vertex, say vi, never guesses its color, then
by Theorem 2.6 we have h(G) = h(G − vi). If vi is a vertex of the cycle, then the
graph G− vi is a subgraph of a tree. Using Theorem 2.7 we get h(G− vi) ≤ 1/2, and
therefore h(G) ≤ 1/2. On the other hand, by Fact 2.2 we have h(G) ≥ 1/2. If vi is a
leaf (obviously, G has at least one leaf), then the graph G−vi is a unicyclic graph with
n − 1 vertices containing Ck. By the inductive hypothesis we have h(G − vi) = 1/2,
and therefore h(G) = 1/2. Now assume that every vertex of the cycle, and every leaf
guesses its color, that is, every one of these vertices guesses its color in at least one
situation. We are interested in the possibility when the number of cases for which the
team loses is as small as possible. We assume that every one of those vertices guesses
its color in exactly one situation, and we prove that these guesses suffice to cause the
loss of the team in more than a half of all cases. The vertices of the cycle we denote
by v1, v2, . . . , vk. Let vi and vi+1 be adjacent.

First assume that at least three vertices of the cycle have degree at least three.
This implies that G has at least three leaves having different neighbors. Observe that
each one of the leaves guesses its color wrong in a quarter of all cases. Since the
closed neighborhoods of the leaves are pairwise disjoint, the team wins for at most
(3/4)3 = 27/64 < 1/2 of all cases. This is a contradiction to Corollary 2.3.

Now assume that exactly two vertices of the cycle have degree at least three. Thus
G has at least two leaves, say x and y, which have different neighbors. The neighbor of
x (y, respectively) we denote by x′ (y′, respectively). Let vi mean a vertex of the cycle
such that x, y, x′, y′ /∈ NG[vi]. Let us observe that the vertex vi guesses its color wrong
in 1/8 of all cases as it has two neighbors. Each one of the leaves x and y guesses its
color wrong in a quarter of all cases. Since the closed neighborhoods of the vertices x,
y, and vi are pairwise disjoint, the team wins for at most (3/4)2 · 7/8 = 63/128 < 1/2
of all cases. This is a contradiction to Corollary 2.3.

Now assume that exactly one vertex of the cycle, say v1, has degree at least three.
Let x mean a leaf of Tk which is joined with v1 by a path which does not go through
any other vertex of the cycle. The vertex x guesses its color wrong in a quarter of
all cases. Each one of the vertices v3 and v4 guesses its color wrong in 1/8 of all
cases. Let us observe that both these vertices at the same time guess their colors
wrong in at most 1/16 of all cases. Thus they guess their colors wrong in at least
1/8 + 1/8 − 1/16 = 3/16 of all cases. Similarly we conclude that the vertices v7

and v8 guess their colors wrong in at least 3/16 of all cases. Disjointness of proper
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neighborhoods implies that the team wins for at most (13/16)2 ·3/4 = 507/1024 < 1/2
of all cases. This is a contradiction to Corollary 2.3.

5. HAT PROBLEM ON A GRAPH WITH A UNIVERSAL VERTEX

Now we consider the hat problem on graphs with a universal vertex.
We have the following property of optimal strategies for such graphs.

Fact 5.1. Let G be a graph, and let v be a universal vertex of G. If S is an optimal

strategy for the graph G, then for every situation of v, in at least one of two cases

corresponding to this situation some vertex guesses its color.

Proof. Let s be a situation of v. Suppose that the strategy S for the graph G is
optimal, and in the cases c and d corresponding to the situation s no vertex guesses
its color. Of course, for both these cases the team loses. Let the strategy S′ for the
graph G differ from S only in that in the situation s the vertex v guesses it has the
color which it has in the case c. In the strategy S′ the result of the case c is a win,
and d is a loss. This implies that |W (S′)| = |W (S)| + 1, and consequently,

p(S′) =
|W (S′)|
|C(G)| =

|W (S)| + 1

|C(G)| >
|W (S)|
|C(G)| = p(S),

a contradiction to the optimality of S.

Now, let us consider a strategy for a graph with a universal vertex such that there
are two cases corresponding to the same situation of a universal vertex, and in one
of them no vertex guesses its color, while in the second some vertex guesses its color.
In the following lemma we give a method of creating a strategy which is not worse
than that.

Lemma 5.2. Let G be a graph and let v be a universal vertex of G. Let c and d be

any cases corresponding to the same situation of v. Let S be a strategy for the graph

G such that in the case c no vertex guesses its color, and in the case d some vertex

guesses its color. Let the strategy S′ for the graph G differ from S only in that v, in

the situation to which correspond cases c and d, guesses it has the color which it has

in the case c. Then p(S′) ≥ p(S).

Proof. The result of the case c in the strategy S′ is a win, and in the strategy S is a
loss. The result of the case d in the strategy S′ is a loss. If the result of the case d in
the strategy S is also a loss, then |W (S′)| = |W (S)|+ 1. If the result of the case d in
the strategy S is a win, then |W (S′)| = |W (S)|. This implies that |W (S′)| ≥ |W (S)|.
Therefore p(S′) ≥ p(S).

It is possible to prove that if a graph has a universal vertex, then there exists an
optimal strategy such that in every case some vertex guesses its color. This implies
that to solve the hat problem on a graph with a universal vertex it suffices to examine
only strategies such that in every case some vertex guesses its color. Thus if in some
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case of a strategy no vertex guesses its color, then we can cease further examining
this strategy.

Theorem 5.3. If G is a graph with a universal vertex, then there exists a strategy

S ∈ F0(G) such that |Ln(S)| = 0.

Proof. Suppose that for every optimal strategy S for the graph G we have |Ln(S)| > 0.
Let S′ be an optimal strategy for G, and let c1, c2, . . . , cn be the cases in which no
vertex guesses its color. By Fact 5.1, any two of them do not correspond to the same
situation of v. Let the strategy S1 for the graph G differ from S′ only in that v, in the
situation to which corresponds the case c1, guesses it has the color which it has in the
case c1. By Lemma 5.2 we have p(S1) ≥ p(S′). Let the strategy S2 for the graph G
differ from S1 only in that v, in the situation to which corresponds the case c2, guesses
it has the color which it has in the case c2. By Lemma 5.2 we have p(S2) ≥ p(S1).
After n− 2 further analogical steps we get the strategy S = Sn for the graph G such
that p(S) ≥ p(Sn−1) ≥ . . . ≥ p(S2) ≥ p(S1) ≥ p(S′), and there is no case in which
no vertex guesses its color. Since the strategy S′ for the graph G is optimal, and
p(S) ≥ p(S′), the strategy S is also optimal. In every case in the strategy Sn some
vertex guesses its color, thus |Ln(S)| = 0.

In the next fact we state that there exists a graph with a universal vertex for which
there exists an optimal strategy such that in some case no vertex guesses its color.

Fact 5.4. There exists a strategy S ∈ F0(K2) such that |Ln(S)| > 0.

Proof. Let S = (g1, g2) ∈ F(K2) be the strategy as follows.

g1(s1) =

{

1 if s1(v2) = 1,

∗ otherwise,

g2(s2) =

{

2 if s2(v1) = 2,

∗ otherwise.

All cases we present in Table 1.

Table 1.

No The color of The guess of Result
v1 v2 v1 v2

1 1 1 + +
2 1 2 −
3 2 1 − − −
4 2 2 + +

From Table 1 we know that |W (S)| = 2 and |Ln(S)| = 1. We have |C(K2)| = 4,
thus p(S) = 2/4 = 1/2. The graph K2 is a tree, therefore by Theorem 2.7 we have
h(K2) = 1/2. Since h(K2) = 1/2, the strategy S is optimal for K2. Both vertices v1

and v2 are universal, and |Ln(S)| = 1 as in the case in which v1 has the first color,
and v2 has the second color no vertex guesses its color.
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6. A NORDHAUS-GADDUM TYPE INEQUALITIES

In this section we give some Nordhaus-Gaddum type inequalities.
In the following two theorems we give a lower and upper bounds on the product

(sum, respectively) of the hat number of a graph and the hat number of its comple-
ment.

Theorem 6.1. For every graph G we have 1/4 ≤ h(G)h(G) < 1.

Proof. By Corollary 2.2 we have h(G) ≥ 1/2 and h(G) ≥ 1/2, so h(G)h(G) ≥ 1/4.
Since by Fact 2.4 we have h(G)<1 and h(G)<1, we get h(G)h(G)<1.

Theorem 6.2. For every graph G we have 1 ≤ h(G) + h(G) < 2.

The proof is similar to that of Theorem 6.1.
Now we prove that for every number greater than or equal to quarter, and smaller

than one, there exists a graph for which the product of its hat number and the hat
number of its complement is greater than that number.

Theorem 6.3. For every α ∈ [1/4; 1) there is a graph G such that h(G)h(G) > α.

Proof. Let G be a graph with 2n vertices such that V (G) = {v1, v2, . . . , vn, v′1, v
′
2,

. . . , v′n} and E(G) = {vivj : i, j ∈ {1, 2, . . . , n}, i 6= j}. It is easy to see that E(G) =
{viv

′
j : i, j ∈ {1, 2, . . . , n}} ∪ {v′iv′j : i, j ∈ {1, 2, . . . , n}, i 6= j}. Since Kn is a subgraph

of both graphs G and G, by Fact 2.1 we have h(G) ≥ h(Kn) and h(G) ≥ h(Kn). To
prove that h(G)h(G) > α, it suffices to prove that (h(Kn))2 > α, that is h(Kn) >

√
α.

The authors of [14] have proven that for the hat problem with n = 2k−1 players there
exists a strategy giving the chance of success (2k−1)/2k. Since limk→∞(2k−1)/2k = 1,
for every α ∈ [1/4; 1) there exists a positive integer k such that for the hat problem
with n = 2k − 1 players there exists a strategy S such that p(S) ≥ 1 − 1/2k =
1 − 1/(n + 1) >

√
α. By definition we have h(Kn) ≥ p(S), thus h(Kn) >

√
α.

The following theorem says that for every number greater than or equal to one,
and smaller than two, there exists a graph for which the sum of its hat number and
the hat number of its complement is greater than that number.

Theorem 6.4. For every α ∈ [1; 2) there is a graph G such that h(G) + h(G) > α.

The proof is similar to that of Theorem 6.3.
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