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ON THE EXTENDED AND ALLAN SPECTRA
AND TOPOLOGICAL RADII
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Abstract. In this paper we prove that the extended spectrum X (z), defined by W. Zelazko,
of an element x of a pseudo-complete locally convex unital complex algebra A is a subset
of the spectrum o4(z), defined by G.R. Allan. Furthermore, we prove that they coincide
when X(z) is closed. We also establish some order relations between several topological radii
of z, among which are the topological spectral radius R:(x) and the topological radius of
boundedness (:(z).
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1. INTRODUCTION

A complex algebra A with a topology 7 is a locally convex algebra if it is a Hausdorff
locally convex space and its multiplication (z,y) — xy is jointly continuous. The
topology of A can be given by the family of all continuous seminorms on A.

Throughout this paper A = (A, 7) will be a locally convex complex algebra with
unit e, A’ its topological dual and {J|-||, : & € A} the family of all continuous semi-
norms on A.

An element x € A is called bounded if for some non-zero complex number A, the
set {(A\z)" :n=1,2,...} is a bounded set of A. The set of all bounded elements of A
is denoted by Ajg.

For x € A define the radius of boundedness ((x) of x by

B(x) = inf{)\ >0: {(;)n in > 1} is bounded}

adopting the usual convention that inf @ = co. Henceforth we shall use this convention
without further mention.
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Notice that A\g > 0 and {(%0) in 2 1} bounded imply H(%)"Ha — 0 for all
[A] > Ao and « € A. Using this fact it is easy to see that 5(z) = Bo(z), where

Bo(z) = inf{)\ >0: lim (;)n = O}.

In [1], by Bs it is denoted the collection of all subsets B of A such that:

(i) B is absolutely convex and B2 C B,
(ii) B is bounded and closed.

For any B € By, let A (B) be the subalgebra of A generated by B. From (i) we get
A(B)={ :AeC,z € B}.

The formula
|z|| g =inf{\ > 0:2 € AB}

defines a norm in A (B), which makes it a normed algebra. It will always be assumed
that A (B) carries the topology induced by this norm. Since B is bounded in (4, 1),
the norm topology on A (B) is finer than its topology as a subspace of (4, 7).

The algebra A is called pseudo-complete if each of the normed algebras A (B), for
B € By, is a Banach algebra. It is proved in [1, Proposition 2.6] that if A is sequentially
complete, then A is pseudo-complete.

In [1], it is also introduced by G. R. Allan the spectrum c4(x) of x € A as the
subset of the Riemann sphere Co, = C U {00} defined as follows:

(a) for A # 0o, A € oa(x) if and only if e — 2 has no inverse belonging to Ay,
(b) o0 € oa(x) if and only if = ¢ Ay.

In [1, Corollary 3.9] it is proved that o4(x) # 0 for all z. We shall call o 4(z) the
Allan spectrum.
The Allan spectral radius r4(x) of x is defined by

ra(x) =sup{|A\|: A€o (z)},
where |oo| = 0. _
On the other hand, W. Zelazko defined in [4] the concept of extended spectrum of
x € A in the way that we now recall.

As usual

olx)={NeC:le—ax ¢ G(A)},
where G (A) is the set of all invertible elements of A. The resolvent
A= R(\z)=(e—2)""
is then defined on C\ o (z), but it is not always a continuous map. Put

oa(x) = {Xo € C\o(z) : R(\, ) is discontinuous at A = Ap}
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and

(z) @ if A— R(1,Az) is continuous at A = 0,
o) =
> oo otherwise.

Then the extended spectrum of x is the set
() =0(z)Uog (2) Uos(z).

It is proved in [4, Theorem 15.2] that if A is complete, then 3(z) is a non empty
set of Co for every x, and the extended spectral radius R(x) is defined by

R(z) =sup{|A|: A € ()}

We shall not assume that A is complete. Nevertheless, from now on we assume
that X(z) is a non empty set of Co, for every x € A.

2. COMPARISON OF %(z) AND o4()

Theorem 2.1. If A is pseudo-complete, then X(x) C oa(x) for any x € A.

Proof. Let A ¢ ca(x) with A # oo, then A\ ¢ o(z) and R(\, z) is bounded. Hence
R (X, z) € A(B) for some B € B; ([1, Proposition 2.4]).

For any pu € C, we have that (ue—z) = (de—xz) + (u—A)e. Let 0 < v <
IR (A, z)||5", then for | — A| < v, the formula

S (1) = RO\, 2) = (1 = ) RO @)+ (11 = A RO 2)° = +(=1)" (= A)" RO @)™+,

defines a Cauchy sequence in the Banach algebra A (B). Therefore, it converges in
A(B) to R (p, ).
Given € > 0, there exists 0 < § < v such that

1
<e€
1—vy ||R(/\’1‘)|B>
for all n if |A\ — u| < &, which implies that [|R (u,z) — R(A,x)|| < e if |A—p| < 4.
Hence R (u,z) — R(\,z) as p — A, in A (B) and also in (A4, 7), therefore A\ ¢ o4(x).
Thus, A ¢ 3(z).

If 0o ¢ 04(x), then x is bounded and there exists > 0 such that the idempotent
set {(%)n in > 1} is bounded. The closed absolutely convex hull B of { (%)n in > 1}

belongs to B;. Consider the Banach algebra A (B). Since

we obtain

150 (1) = RO @) |5 < = AR @) (

% < 1 for every |B| > r,
B

2
x X X

in the Banach algebra A (B).
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Since
—0

Rl,fﬂ>_
H ( 5) " “lls

as | 8| — oo, we have that R (1,tz) — east — 0, in A (B) and hence in (A4, 7) as well.
Thus R (1,tz) is continuous in ¢t = 0 and co ¢ X(z). O

Lemma 2.2. Suppose A is pseudo-complete and let x € A be such that the extended
spectral radius R(x) < oo. Then for each f € A’ the function F(\) = f (R (1, z))
is holomorphic in the open disc D (0,0), with § = %, where D (0,0) = C when
R(z) = 0. Furthermore,

FM(X) =nlf (R (1, Az)" x") (2.1)
for every A € D (0,0) and n =0,1,2,.... In particular,
F™ (0) = nlf(z")
for alln > 0.
Proof. We have that A ¢ X(z) whenever |A| > R(z). This implies that the function
A— R(1,\x)

is continuous in the open disc D = D (0, 6). By definition F(©) (0) = f (e) and F(\) =
f (R (1,Az)) is holomorphic in D since

f(R(1Az)) = f (R(1, o))

/ T o
F (o) = lim 2 o =
L R(1,\z) R(1, Aow) (A= Xo) )
= f ( X — o -
—f (R(I,Aoz)2x>
for every \g € D.
It is easy to obtain (2.1) by induction. O

Theorem 2.3. If A is pseudo-complete, then for any x € A we have that X(x)
=o4(x) if X (x) is closed in Cy.

Proof. Let x € A and assume that X(z) is closed, then by Theorem 2.1 we only have
to prove that Ao ¢ X(z) implies Ag & oa(z).

Let Ao ¢ 2(z), with Ay # 00, then Age—z € G (A). We shall show that (Age — z) "
is bounded. Since X(z) is closed, then there exists an open disc D (\g) around A such
that de —x € G(A) if A € D (\) and R(\, z) is continuous at A = Ag. Using the
identity

Ae—z) —oe—2) ' =No—A)Ae—xz) e —a) ",
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we obtain RO\ RO
lim ( 733)_ ( va)

A—Xo A— Ao
Then for any f € A’ we get
. f(R(A 7)) = [ (R(Xo, 7))
Jim. SN =~/ (BOo,2)7),
which implies that R(X,x) is weakly holomorphic in A = A¢. By [1, Theorem 3.8 (i)]
we obtain that (Age — )" is bounded in A. Therefore, A & o4 ().
If oo ¢ 3(x), then some neighborhood of oo does not intersect X(z) and we

have that R(x) < oco. Let f € A’. By Lemma 2.2, the Taylor expansion of F(\) =
f(R(1,Az)) around 0 is

= _R()\(), IE)2.

2)?
F()\):f(e)—i—)\f(x)—&-j (.1‘2)-1—...
for |A] < ﬁ In particular, lim f(Ajz"™) = 0 for some Ag > 0 and then
{f (Ajx™) : n > 1} is bounded; therefore {(Agz)™ : n > 1} is bounded. Thus = € Ay
and oo ¢ o4(x). O

3. COMPARISON BETWEEN TOPOLOGICAL RADII

Let € A, we say that = is topologically invertible if tA = Ax = A, i.e. for each
neighborhood V of e there exist ay,ai, € A such that zay € V and a’Vx evV.
The topological spectrum o¢(x) of  is the set

ot(x) = {A € C: Xe — x is not topological invertible} .
The topological spectral radius Ry(x) is defined by
Ri(z) =sup{|A\| : A € oy(x)} .

Having in mind the definition of By(z) we define the topological radius of
boundedness ¢(x) of x by

Bi(x) = inf {)\ >0: limninf H (;)n

In [2] the first author defined the lower extended spectral radius of x by

R, (x) = sup liminf {/|z"|,
aceAh T
and in [3] it is proved that if A is a complete locally convex unital algebra, then for

any x € A we have R,(z) < ro(z), and R.(z) = ro(z) if A is a unital By-algebra
(metrizable complete locally convex algebra), where

ro(z) = inf{ 0 < r < co: there exists (a,)y ,an € C, such that
Z an A" has radius of convergence r and
Z anx™ converges in A}
(In [3] this radius is denoted by rg(x)).

=0bnmaeA}

[e3%



232 Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo

Here we have the following result.

Proposition 3.1. Let x € A. Then
Ry(z) < Bi(x) = Ri (x) < B(x) < ra(2).

Proof. The first inequality is obvious if §;(z) = oo, therefore let §;(z) < co. Given
A > fBy(x) and o € A, there exists a subsequence (ny), = (ni (o)), of the natural
sequence (n) such that klim (%)™ |, = 0. Then

:L.’I’kal

. e
kl;rrgo"(A+)\2+...+ X )()\e—x)—e

Hence Ae—x is topologically invertible for any such A and it follows that R:(x) < S;(x).
If R, (z) = oo, then B:(x) < R.(x). Now suppose R, (z) < p < A < co. Then given
a € A there exists a subsequence (n), = (n (o)), of (n) such that "/||zm+||, < p
< A, which implies that H (%)nk Ha < (%)nk Therefore, 5:(x) < X and we have
Be(x) < Ru(x).
Assume that §;(z) < R.(z), then there exist A > 0 and «g € A such that 8;(x) <

A < Ri(z) and A < liminf /|lz"[|, . Hence liminf 1“/”(%)“”&0 > 1. On the other

hand, A > (:(x) implies that limn inf 7/ H (%)HHQO = 0, which contradicts the previous
statement. Thus, B:(x) = R.(x).

Since f((x) = Bo(z) it is clear that f;(z) < B(z). Finally, S(z) < ra(x) by
[1, Theorem 3.12]. O

=0.

«

Corollary 3.2. If A is pseudo-complete, then
Ri(z) < Ri(x) = B (x) < B(z) = ra(z) < R(x)

for every x € A.

Proof. Let x € A. We have by [1, Theorem 3.12] that 3 () = r4(x). Thus we only have
to prove that 3(xz) < R(x). This is obvious if R () = oo, so assume that R(z) < oo,
therefore oo ¢ ¥(x). Applying Lemma 2.2 we obtain that the Taylor expansion about
0of F(\) = f(R(1,\x)) is

2)\2

FO) = F(e) +Af(a) + 5

(wz)—i—...

for f € A" and || < %.

Then lim f((Ax)") =0 for any 0 < A < ﬁ and f € A’. In particular, for any
such X the set {(Az)" :n > 1} is weakly bounded and therefore {(Az)" :n > 1} is
bounded in A. It follows that A > 3(z) for every A > R(x) and then 8(z) < R(z). O

Proposition 3.3. If A is complete, then r4(x) = 8(x) = R(zx) for all x € A.
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Proof. Tt remains to prove that R(z) < f(z). We can assume that §(x) < oo. Let
r > (8 (x), then we have that f ((%)n) — 0 for every f € A’, therefore

limsup v/|f(2™)| <r
for every f € A’. We get from [4, Theorem 15.6] that

R(z) = Ra(x) = sup limsup ¥/ |f(z")] <.

fear n
Therefore, R(z) < ((x). O

Remark 3.4. In [2] it is constructed a unital Bp-algebra A in which there is an
element x such R.(z) = 1 and R (z) = oo. On the other hand, if we consider the
non-complete algebra A = (P(t),||:]]) of all complex polynomials with the norm
llp(t)|| = maxo<i<1 |p(t)], then for every A # 0 we have that H (%)HH = ﬁ Therefore
B(t) = 1, nevertheless R(t) = oo since A — t does not have an inverse for all A € C.
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