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ON THE EXTENDED AND ALLAN SPECTRA
AND TOPOLOGICAL RADII

Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo,
and Jairo Roa-Fajardo

Abstract. In this paper we prove that the extended spectrum Σ (x), defined by W. Żelazko,
of an element x of a pseudo-complete locally convex unital complex algebra A is a subset
of the spectrum σA(x), defined by G.R. Allan. Furthermore, we prove that they coincide
when Σ(x) is closed. We also establish some order relations between several topological radii
of x, among which are the topological spectral radius Rt(x) and the topological radius of
boundedness βt(x).
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1. INTRODUCTION

A complex algebra A with a topology τ is a locally convex algebra if it is a Hausdorff
locally convex space and its multiplication (x, y) → xy is jointly continuous. The
topology of A can be given by the family of all continuous seminorms on A.

Throughout this paper A = (A, τ) will be a locally convex complex algebra with
unit e, A′ its topological dual and {‖·‖α : α ∈ Λ} the family of all continuous semi-
norms on A.

An element x ∈ A is called bounded if for some non-zero complex number λ, the
set {(λx)n : n = 1, 2, . . .} is a bounded set of A. The set of all bounded elements of A
is denoted by A0.

For x ∈ A define the radius of boundedness β(x) of x by

β(x) = inf
{
λ > 0 :

{(x
λ

)n
: n ≥ 1

}
is bounded

}
adopting the usual convention that inf ∅ =∞. Henceforth we shall use this convention
without further mention.
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Notice that λ0 > 0 and
{(

x
λ0

)n
: n = 1

}
bounded imply

∥∥(x
λ

)n∥∥
α
→ 0 for all

|λ| > λ0 and α ∈ Λ. Using this fact it is easy to see that β(x) = β0(x), where

β0(x) = inf
{
λ > 0 : lim

n→∞

(x
λ

)n
= 0
}
.

In [1], by B1 it is denoted the collection of all subsets B of A such that:

(i) B is absolutely convex and B2 ⊂ B,
(ii) B is bounded and closed.

For any B ∈ B1, let A (B) be the subalgebra of A generated by B. From (i) we get

A (B) = {λx : λ ∈ C, x ∈ B} .

The formula
‖x‖B = inf {λ > 0 : x ∈ λB}

defines a norm in A (B), which makes it a normed algebra. It will always be assumed
that A (B) carries the topology induced by this norm. Since B is bounded in (A, τ),
the norm topology on A (B) is finer than its topology as a subspace of (A, τ).

The algebra A is called pseudo-complete if each of the normed algebras A (B), for
B ∈ B1, is a Banach algebra. It is proved in [1, Proposition 2.6] that if A is sequentially
complete, then A is pseudo-complete.

In [1], it is also introduced by G. R. Allan the spectrum σA(x) of x ∈ A as the
subset of the Riemann sphere C∞ = C ∪ {∞} defined as follows:

(a) for λ 6=∞, λ ∈ σA(x) if and only if λe− x has no inverse belonging to A0,
(b) ∞ ∈ σA(x) if and only if x /∈ A0.

In [1, Corollary 3.9] it is proved that σA(x) 6= ∅ for all x. We shall call σA(x) the
Allan spectrum.

The Allan spectral radius rA(x) of x is defined by

rA(x) = sup {|λ| : λ ∈ σA (x)} ,

where |∞| =∞.
On the other hand, W. Żelazko defined in [4] the concept of extended spectrum of

x ∈ A in the way that we now recall.
As usual

σ(x) = {λ ∈ C : λe− x /∈ G (A)} ,

where G (A) is the set of all invertible elements of A. The resolvent

λ→ R (λ, x) = (λe− x)−1

is then defined on C�σ(x), but it is not always a continuous map. Put

σd(x) = {λ0 ∈ C�σ(x) : R (λ, x) is discontinuous at λ = λ0}
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and

σ∞(x) =

{
∅ if λ→ R (1, λx) is continuous at λ = 0,
∞ otherwise.

Then the extended spectrum of x is the set

Σ(x) = σ(x) ∪ σd (x) ∪ σ∞(x).

It is proved in [4, Theorem 15.2] that if A is complete, then Σ(x) is a non empty
set of C∞ for every x, and the extended spectral radius R(x) is defined by

R(x) = sup {|λ| : λ ∈ Σ(x)} .

We shall not assume that A is complete. Nevertheless, from now on we assume
that Σ(x) is a non empty set of C∞ for every x ∈ A.

2. COMPARISON OF Σ(x) AND σA(x)

Theorem 2.1. If A is pseudo-complete, then Σ(x) ⊂ σA(x) for any x ∈ A.

Proof. Let λ /∈ σA(x) with λ 6= ∞, then λ /∈ σ(x) and R(λ, x) is bounded. Hence
R (λ, x) ∈ A (B) for some B ∈ B1 ([1, Proposition 2.4]).

For any µ ∈ C, we have that (µe− x) = (λe− x) + (µ− λ) e. Let 0 < γ <

‖R (λ, x)‖−1
B , then for |µ− λ| < γ, the formula

Sn (µ) = R(λ, x)−(µ− λ)R(λ, x)2+(µ− λ)2
R(λ, x)3−. . .+(−1)n (µ− λ)nR(λ, x)n+1,

defines a Cauchy sequence in the Banach algebra A (B). Therefore, it converges in
A (B) to R (µ, x) .

Given ε > 0, there exists 0 < δ < γ such that

‖Sn (µ)−R(λ, x)‖B ≤ |µ− λ| ‖R(λ, x)‖2B

(
1

1− γ ‖R(λ, x)‖B

)
< ε

for all n if |λ− µ| < δ, which implies that ‖R (µ, x)−R(λ, x)‖ ≤ ε if |λ− µ| < δ.
Hence R (µ, x)→ R(λ, x) as µ→ λ, in A (B) and also in (A, τ), therefore λ /∈ σd(x).
Thus, λ /∈ Σ(x).

If ∞ /∈ σA(x), then x is bounded and there exists r > 0 such that the idempotent
set
{(

x
r

)n : n ≥ 1
}
is bounded. The closed absolutely convex hull B of

{(
x
r

)n : n ≥ 1
}

belongs to B1. Consider the Banach algebra A (B). Since
∥∥∥ xβ∥∥∥

B
< 1 for every |β| > r,

we obtain

R

(
1,
x

β

)
= e+

x

β
+
(
x

β

)2

+ . . .

in the Banach algebra A (B).
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Since ∥∥∥∥R(1,
x

β

)
− e
∥∥∥∥
B

→ 0

as |β| → ∞, we have that R (1, tx)→ e as t→ 0, in A (B) and hence in (A, τ) as well.
Thus R (1, tx) is continuous in t = 0 and ∞ /∈ Σ(x).

Lemma 2.2. Suppose A is pseudo-complete and let x ∈ A be such that the extended
spectral radius R(x) < ∞. Then for each f ∈ A′ the function F (λ) = f (R (1, λx))
is holomorphic in the open disc D (0, δ), with δ = 1

R(x) , where D (0, δ) = C when
R(x) = 0. Furthermore,

F (n)(λ) = n!f
(
R (1, λx)n+1

xn
)

(2.1)

for every λ ∈ D (0, δ) and n = 0, 1, 2, . . .. In particular,

F (n) (0) = n!f(xn)

for all n ≥ 0.

Proof. We have that λ /∈ Σ(x) whenever |λ| > R(x). This implies that the function

λ→ R (1, λx)

is continuous in the open disc D = D (0, δ). By definition F (0) (0) = f (e) and F (λ) =
f (R (1, λx)) is holomorphic in D since

F ′ (λ0) = lim
λ→λ0

f (R (1, λx))− f (R (1, λ0x))
λ− λ0

=

= lim
λ→λ0

f

(
R (1, λx)R (1, λ0x) (λ− λ0)x

λ− λ0

)
=

= f
(
R (1, λ0x)2

x
)

for every λ0 ∈ D.
It is easy to obtain (2.1) by induction.

Theorem 2.3. If A is pseudo-complete, then for any x ∈ A we have that Σ(x)
= σA(x) if Σ (x) is closed in C∞.

Proof. Let x ∈ A and assume that Σ(x) is closed, then by Theorem 2.1 we only have
to prove that λ0 /∈ Σ(x) implies λ0 /∈ σA(x).

Let λ0 /∈ Σ(x), with λ0 6=∞, then λ0e−x ∈ G (A). We shall show that (λ0e− x)−1

is bounded. Since Σ(x) is closed, then there exists an open disc D (λ0) around λ0 such
that λe − x ∈ G (A) if λ ∈ D (λ0) and R(λ, x) is continuous at λ = λ0. Using the
identity

(λe− x)−1 − (λ0e− x)−1 = (λ0 − λ) (λe− x)−1 (λ0e− x)−1
,
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we obtain
lim
λ→λ0

R(λ, x)−R(λ0, x)
λ− λ0

= −R(λ0, x)2.

Then for any f ∈ A′ we get

lim
λ→λ0

f (R(λ, x))− f (R(λ0, x))
λ− λ0

= −f
(
R(λ0, x)2

)
,

which implies that R(λ, x) is weakly holomorphic in λ = λ0. By [1, Theorem 3.8 (i)]
we obtain that (λ0e− x)−1 is bounded in A. Therefore, λ0 /∈ σA(x).

If ∞ /∈ Σ(x), then some neighborhood of ∞ does not intersect Σ(x) and we
have that R(x) < ∞. Let f ∈ A′. By Lemma 2.2, the Taylor expansion of F (λ) =
f (R (1, λx)) around 0 is

F (λ) = f (e) + λf(x) +
2λ2

2!
f
(
x2
)

+ . . .

for |λ| < 1
R(x) . In particular, lim

n→∞
f (λn0x

n) = 0 for some λ0 > 0 and then
{f (λn0x

n) : n ≥ 1} is bounded; therefore {(λ0x)n : n ≥ 1} is bounded. Thus x ∈ A0

and ∞ /∈ σA(x).

3. COMPARISON BETWEEN TOPOLOGICAL RADII

Let x ∈ A, we say that x is topologically invertible if xA = Ax = A, i.e. for each
neighborhood V of e there exist aV , a′V ∈ A such that xaV ∈ V and a′V x ∈ V.

The topological spectrum σt(x) of x is the set

σt(x) = {λ ∈ C : λe− x is not topological invertible} .

The topological spectral radius Rt(x) is defined by

Rt(x) = sup {|λ| : λ ∈ σt(x)} .

Having in mind the definition of β0(x) we define the topological radius of
boundedness βt(x) of x by

βt(x) = inf
{
λ > 0 : lim inf

n

∥∥∥(x
λ

)n∥∥∥
α

= 0 for all α ∈ Λ
}
.

In [2] the first author defined the lower extended spectral radius of x by

R∗(x) = sup
α∈Λ

lim inf
n

n

√
‖xn‖α

and in [3] it is proved that if A is a complete locally convex unital algebra, then for
any x ∈ A we have R∗(x) ≤ r0(x), and R∗(x) = r0(x) if A is a unital B0-algebra
(metrizable complete locally convex algebra), where

r0(x) = inf{ 0 < r 5∞: there exists (an)∞0 , an ∈ C, such that∑
anλ

n has radius of convergence r and∑
anx

n converges in A}
(In [3] this radius is denoted by r6(x)).
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Here we have the following result.

Proposition 3.1. Let x ∈ A. Then

Rt(x) ≤ βt(x) = R∗ (x) ≤ β(x) ≤ rA(x).

Proof. The first inequality is obvious if βt(x) = ∞, therefore let βt(x) < ∞. Given
λ > βt(x) and α ∈ Λ, there exists a subsequence (nk)k = (nk (α))k of the natural
sequence (n) such that lim

k→∞

∥∥(x
λ

)nk
∥∥
α

= 0. Then

lim
k→∞

∥∥∥∥( eλ +
x

λ2
+ . . .+

xnk−1

λnk

)
(λe− x)− e

∥∥∥∥
α

= 0.

Hence λe−x is topologically invertible for any such λ and it follows that Rt(x) ≤ βt(x).
If R∗(x) =∞, then βt(x) ≤ R∗(x). Now suppose R∗(x) < µ < λ <∞. Then given

α ∈ Λ there exists a subsequence (nk)k = (nk (α))k of (n) such that nk
√
‖xnk‖α < µ

< λ, which implies that
∥∥(x

λ

)nk
∥∥
α
<
(
µ
λ

)nk . Therefore, βt(x) ≤ λ and we have
βt(x) ≤ R∗(x).

Assume that βt(x) < R∗(x), then there exist λ > 0 and α0 ∈ Λ such that βt(x) <

λ < R∗(x) and λ < lim inf
n

n

√
‖xn‖α0

. Hence lim inf
n

n

√∥∥(x
λ

)n∥∥
α0

> 1. On the other

hand, λ > βt(x) implies that lim inf
n

n

√∥∥(x
λ

)n∥∥
α0

= 0, which contradicts the previous
statement. Thus, βt(x) = R∗(x).

Since β(x) = β0(x) it is clear that βt(x) ≤ β(x). Finally, β(x) ≤ rA(x) by
[1, Theorem 3.12].

Corollary 3.2. If A is pseudo-complete, then

Rt(x) ≤ R∗(x) = βt (x) ≤ β(x) = rA(x) ≤ R (x)

for every x ∈ A.

Proof. Let x ∈ A. We have by [1, Theorem 3.12] that β (x) = rA(x). Thus we only have
to prove that β(x) ≤ R(x). This is obvious if R (x) =∞, so assume that R(x) <∞,
therefore∞ /∈ Σ(x). Applying Lemma 2.2 we obtain that the Taylor expansion about
0 of F (λ) = f (R (1, λx)) is

F (λ) = f (e) + λf(x) +
2λ2

2!
f
(
x2
)

+ . . .

for f ∈ A′ and |λ| < 1
R(x) .

Then lim
n→∞

f ((λx)n) = 0 for any 0 < λ < 1
R(x) and f ∈ A′. In particular, for any

such λ the set {(λx)n : n ≥ 1} is weakly bounded and therefore {(λx)n : n ≥ 1} is
bounded in A. It follows that λ ≥ β(x) for every λ > R(x) and then β(x) ≤ R(x).

Proposition 3.3. If A is complete, then rA(x) = β(x) = R(x) for all x ∈ A.
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Proof. It remains to prove that R(x) ≤ β(x). We can assume that β(x) < ∞. Let
r > β (x), then we have that f

((
x
r

)n)→ 0 for every f ∈ A′, therefore

lim sup
n

n
√
|f(xn)| ≤ r

for every f ∈ A′. We get from [4, Theorem 15.6] that

R(x) = R2(x) = sup
f∈A′

lim sup
n

n
√
|f(xn)| ≤ r.

Therefore, R(x) ≤ β(x).

Remark 3.4. In [2] it is constructed a unital B0-algebra A in which there is an
element x such R∗(x) = 1 and R (x) = ∞. On the other hand, if we consider the
non-complete algebra A = (P (t), ‖·‖) of all complex polynomials with the norm
‖p(t)‖ = max0≤t≤1 |p(t)|, then for every λ 6= 0 we have that

∥∥( t
λ

)n∥∥ = 1
|λ|n . Therefore

β(t) = 1, nevertheless R(t) =∞ since λ− t does not have an inverse for all λ ∈ C.
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